Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 24(23): 5864-76, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26518618

RESUMO

There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial overharvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbour high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.


Assuntos
Fluxo Gênico , Variação Genética , Genética Populacional , Tartarugas/genética , Animais , Baías , Maryland , Repetições de Microssatélites , Taxa de Mutação , Densidade Demográfica , Análise de Sequência de DNA , Análise Espaço-Temporal , Virginia
2.
Br J Pharmacol ; 155(6): 804-13, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18695639

RESUMO

BACKGROUND AND PURPOSE: Soluble guanylyl cyclase (sGC) is a receptor for nitric oxide that generates cGMP. This second messenger molecule has established roles in cellular physiology; however, less is known about its effects in tumour cells. EXPERIMENTAL APPROACH: The effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one (NS2028), both selective sGC inhibitors on proliferation, death and migration were determined in prostate cancer cell lines. KEY RESULTS: Western blot analysis confirmed the presence of alpha1 and beta1 subunits of sGC in LNCaP and PC-3 cells. Sodium nitroprusside (SNP) increased cGMP accumulation in LNCaP and PC-3, but not DU-145 cells. SNP-stimulated cGMP production in LNCaP cells was dose-dependently reduced by ODQ, with more than 90% inhibition being observed at 0.1 microM. ODQ activated caspase-3 in all three cell lines, but not in normal prostate epithelial cells, at concentrations over 10 muM. High concentrations of ODQ also promoted DNA fragmentation and nucleosome accumulation in the cytosol of LNCaP cells. Interestingly, the chemically related inhibitor, NS2028 was without effect on caspase-3. In addition, ODQ inhibited LNCaP, Du145 and PC-3 cell growth. Finally, although fibroblast growth factor-2 did not enhance cGMP levels in LNCaP cells, its ability to stimulate LNCaP motility was abolished by ODQ. CONCLUSIONS AND IMPLICATIONS: These observations taken together suggest that the action of ODQ in LNCaP cells did not reflect sGC inhibition. We conclude that ODQ promotes cell death and inhibits growth and migration of prostate cancer cells and that these actions are independent of its effects on GMP levels.


Assuntos
Antineoplásicos/farmacologia , GMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/antagonistas & inibidores , Oxidiazóis/farmacologia , Oxazinas/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , GMP Cíclico/biossíntese , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Nitroprussiato/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...