Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(3): 5689-5695, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33651607

RESUMO

A ferroelectric semiconductor junction is a promising two-terminal ferroelectric device for nonvolatile memory and neuromorphic computing applications. In this work, we propose and report the experimental demonstration of asymmetric metal/α-In2Se3/Si crossbar ferroelectric semiconductor junctions (c-FSJs). The depletion in doped Si is used to enhance the modulation of the effective Schottky barrier height through the ferroelectric polarization. A high-performance α-In2Se3 c-FSJ is achieved with a high on/off ratio > 104 at room temperature, on/off ratio > 103 at an elevated temperature of 140 °C, retention > 104 s, and endurance > 106 cycles. The on/off ratio of the α-In2Se3 asymmetric FSJs can be further enhanced to >108 by introducing a metal/α-In2Se3/insulator/metal structure.

2.
ACS Nano ; 10(3): 3791-800, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26914179

RESUMO

The effect of thickness, temperature, and source-drain bias voltage, V(DS), on the subthreshold slope, SS, and off-state properties of black phosphorus (BP) field-effect transistors is reported. Locally back-gated p-MOSFETs with thin HfO2 gate dielectrics were analyzed using exfoliated BP layers ranging in thickness from ∼4 to 14 nm. SS was found to degrade with increasing V(DS) and to a greater extent in thicker flakes. In one of the thinnest devices, SS values as low as 126 mV/decade were achieved at V(DS) = -0.1 V, and the devices displayed record performance at V(DS) = -1.0 V with SS = 161 mV/decade and on-to-off current ratio of 2.84 × 10(3) within a 1 V gate bias window. A one-dimensional transport model has been utilized to extract the band gap, interface state density, and the work function of the metal contacts. The model shows that SS degradation in BP MOSFETs occurs due to the ambipolar turn on of the carriers injected at the drain before the onset of purely thermionic-limited transport at the source. The model is further utilized to provide design guidelines for achieving ideal SS and meet off-state leakage targets, and it is found that band edge work functions and thin flakes are required for ideal operation at high V(DS). This work represents a comprehensive analysis of the fundamental performance limitations of Schottky-contacted BP MOSFETs under realistic operating conditions.

3.
ACS Appl Mater Interfaces ; 7(46): 25804-12, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26502269

RESUMO

Understanding the interactions of ambient molecules with graphene and adjacent dielectrics is of fundamental importance for a range of graphene-based devices, particularly sensors, where such interactions could influence the operation of the device. It is well-known that water can be trapped underneath graphene and its host substrate; however, the electrical effect of water beneath graphene and the dynamics of how the interfacial water changes with different ambient conditions has not been quantified. Here, using a metal-oxide-graphene variable-capacitor (varactor) structure, we show that graphene can be used to capacitively sense the intercalation of water between graphene and HfO2 and that this process is reversible on a fast time scale. Atomic force microscopy is used to confirm the intercalation and quantify the displacement of graphene as a function of humidity. Density functional theory simulations are used to quantify the displacement of graphene induced by intercalated water and also explain the observed Dirac point shifts as being due to the combined effect of water and oxygen on the carrier concentration in the graphene. Finally, molecular dynamics simulations indicate that a likely mechanism for the intercalation involves adsorption and lateral diffusion of water molecules beneath the graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...