Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 257(1): 285-298, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31515607

RESUMO

Centaurea cyanus L. is a valuable source of many different bioactive substances. It is used in herbal medicine, but the structure of its organs used as raw material and secretory tissues has been insufficiently examined. The aim of this paper was to investigate the microstructure of C. cyanus flowers, bracts, stems and leaves with particular emphasis on secretory structures. Moreover, the main classes of secondary metabolites present in the secretion were identified and the taxonomic value of some micromorphological and anatomical features was analysed. Histochemical, micromorphological and ultrastructural analyses of aboveground organs of C. cyanus were carried out using light, fluorescence, scanning and transmission electron microscopy. The analyses revealed the presence of petal papillae and a characteristic cuticular pattern on the petals, stamens and stylar hairs. There were four types of non-glandular trichomes on the bracts, leaves and stem surfaces. The epidermal cells of the bracts contained prismatic calcium oxalate crystals. Two kinds of secretory structures, i.e. glandular trichomes and ducts, were observed in the C. cyanus organs. The glandular trichomes were located on the bract and stem surfaces, and the ducts were detected in the leaves and stems. Ultrastructural analyses of the epithelium of the ducts showed the presence of strongly osmiophilic insoluble phenolic material in vacuoles as well as moderately osmiophilic insoluble lipidic material in elaioplasts and vesicles. The results of histochemical assays showed a heterogeneous nature of the duct secretion, which contained essential oil, lipids, flavonoids, tannins and terpenes containing steroids.


Assuntos
Centaurea/citologia , Centaurea/ultraestrutura , Histocitoquímica , Especificidade de Órgãos , Fitoterapia , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Caules de Planta/anatomia & histologia , Caules de Planta/ultraestrutura
2.
J Environ Sci (China) ; 65: 271-281, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548398

RESUMO

The spores of Cladosporium Link. are often present in the air in high quantities and produce many allergenic proteins, which may lead to asthma. An aerobiological spore monitoring program can inform patients about the current spore concentration in air and help their physicians determine the spore dose that is harmful for a given individual. This makes it possible to develop optimized responses and propose personalized therapy for a particular sensitive patient. The aim of this study was to assess the extent of the human health hazard posed by the fungal genus Cladosporium. For the first time, we have determined the number of days on which air samples in Poland exceeded the concentrations linked to allergic responses of sensitive patients, according to thresholds established by three different groups (2800/3000/4000 spores per 1m3 of the air). The survey was conducted over three consecutive growing seasons (April-September, 2010-2012) in three cities located in different climate zones of Poland (Poznan, Lublin and Rzeszow). The average number of days exceeding 2800 spores per cubic meter (the lowest threshold) ranged from 61 (2010) through 76 (2011) to 93 (2012), though there was significant variation between cities. In each year the highest concentration of spores in the air was detected in either Poznan or Lublin, both located on large plains with intensive agriculture. We have proposed that an effective, science-based software platform to support policy-making on air quality should incorporate biological air pollutant data, such as allergenic fungal spores and pollen grains.


Assuntos
Microbiologia do Ar , Cladosporium , Exposição Ambiental/estatística & dados numéricos , Esporos Fúngicos , Poluentes Atmosféricos/análise , Poluição do Ar , Monitoramento Ambiental , Humanos , Polônia , Estações do Ano
3.
Aerobiologia (Bologna) ; 32: 109-126, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034537

RESUMO

Temperature is the environmental factor that systematically changes for decades and, as in plants and animals, can significantly affect the growth and development of fungi, including the abundance of their sporulation. During the time of study (2010-2012), a rapid increase in air temperature was observed in Poland, which coincided with the substantial decrease in rainfall. The increase in annual mean temperatures at three monitoring sites of this study was 0.9 °C in Lublin and Rzeszow (east Poland) and 2.0 °C in Poznan (west Poland). Such warming of air masses was comparable to the average global air temperature rise in the period of 1880-2012 accounting for 0.85 °C, as reported by the Intergovernmental Panel on Climate Change. Moreover, there was a substantial decrease in rainfall, ranging from 32.7 % (Poznan) to 43.0 % (Rzeszow). We have demonstrated that under such conditions the mean and median values of total Cladosporium spore counts significantly increased and the spore seasons were greatly accelerated. Moreover, earlier start and later end of the season caused its extension, lasting from over 20 days in Rzeszow to around 60 days in Lublin and Poznan, when the cumulative amount of 5-95 % of spores was considered. The time of reaching the cumulative amount of 50 % of spores was up to 25 days earlier (difference in Poznan between 2010 and 2012). There was also a striking acceleration of the date of the maximal Cladosporium spore concentration per cubic metre of air (26 days for Lublin, 43 for Poznan and 56 for Rzeszow).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...