Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(43): 27741-27748, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33163756

RESUMO

Membrane proteins are key constituents of the proteome of cells but are poorly characterized, mainly because they are difficult to solubilize. Proteome analysis involves separating proteins as a preliminary step toward their characterization. Currently, the most common method is "solubilizing" them with sophisticated detergent and lipid mixtures for later separation via, for instance, sodium dodecyl sulfate polyacrylamide gel electrophoresis. However, this later step induces loss of 3D structure (denaturation). Migration in a medium that mimics the cell membrane should therefore be more appropriate. Here, we present a successful electrophoretic separation of a mixture first of two and then of three different membrane objects in supported n-bilayers. These "objects" are composed of membrane proteins sulfide quinone reductase and α-hemolysin. Sulfide quinone reductase forms an object from three monomers together and self-inserts into the upper leaflet. α-Hemolysin inserts as a spanning heptamer into a bilayer or can build stable dimers of α-hemolysin heptamers under certain conditions. By appropriately adjusting the pH, it proved possible to move them in different ways. This work holds promise for separating membrane proteins without losing their 3D structure, thus their bioactivity, within a lipidic environment that is closer to physiological conditions and for building drug/diagnostic platforms.

2.
Langmuir ; 29(18): 5540-6, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23581462

RESUMO

To determine how lipid bilayer/support interactions are affected by ionic strength, we carried out lipid diffusion coefficient measurements by fluorescence recovery after patterned photobleaching (FRAPP) and transfer ratio measurements using a Langmuir balance on supported bilayers of phosphatidylcholine lipids. The main effect of increasing ionic strength is shown to be enhanced diffusion of the lipids due to a decrease in the electrostatic interaction between the bilayer and the support. We experimentally confirm that the two main parameters governing bilayer behavior are electrostatic interaction and bilayer/support distance. Both these parameters can therefore be used to vary the potential that acts on the bilayer. Additionally, our findings show that FRAPP is an extremely sensitive tool to study interaction effects: here, variations in diffusion coefficient as well as the presence or absence of leaflet decoupling.


Assuntos
Recuperação de Fluorescência Após Fotodegradação , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Termodinâmica , Modelos Moleculares , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA