Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 124(9): 7413-7424, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35860291

RESUMO

Pluto energies of a few kiloelectron volts and suprathermal ions with tens of kiloelectron volts and above. We measure this population using the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on board the New Horizons spacecraft that flew by Pluto in 2015. Even though the measured ions have gyroradii larger than the size of Pluto and the cross section of its magnetosphere, we find that the boundary of the magnetosphere is depleting the energetic ion intensities by about an order of magnitude close to Pluto. The intensity is increasing exponentially with distance to Pluto and reaches nominal levels of the interplanetary medium at about 190R P distance. Inside the wake of Pluto, we observe oscillations of the ion intensities with a periodicity of about 0.2 hr. We show that these can be quantitatively explained by the electric field of an ultralow-frequency wave and discuss possible physical drivers for such a field. We find no evidence for the presence of plutogenic ions in the considered energy range.

2.
Nature ; 413(6854): 390-3, 2001 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-11574879

RESUMO

The NEAR-Shoemaker spacecraft was designed to provide a comprehensive characterization of the S-type asteroid 433 Eros (refs 1,2,3), an irregularly shaped body with approximate dimensions of 34 x 13 x 13 km. Following the completion of its year-long investigation, the mission was terminated with a controlled descent to its surface, in order to provide extremely high resolution images. Here we report the results of the descent on 12 February 2001, during which 70 images were obtained. The landing area is marked by a paucity of small craters and an abundance of 'ejecta blocks'. The properties and distribution of ejecta blocks are discussed in a companion paper. The last sequence of images reveals a transition from the blocky surface to a smooth area, which we interpret as a 'pond'. Properties of the 'ponds' are discussed in a second companion paper. The closest image, from an altitude of 129 m, shows the interior of a 100-m-diameter crater at 1-cm resolution.

3.
Science ; 292(5516): 484-8, 2001 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-11313490

RESUMO

On 25 October 2000, the Near Earth Asteroid Rendevous (NEAR)-Shoemaker spacecraft executed a low-altitude flyover of asteroid 433 Eros, making it possible to image the surface at a resolution of about 1 meter per pixel. The images reveal an evolved surface distinguished by an abundance of ejecta blocks, a dearth of small craters, and smooth material infilling some topographic lows. The subdued appearance of craters of different diameters and the variety of blocks and different degrees of their burial suggest that ejecta from several impact events blanketed the region imaged at closest approach and led to the building up of a substantial and complex regolith consisting of fine materials and abundant meter-sized blocks.

4.
Science ; 289(5487): 2088-97, 2000 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-11000105

RESUMO

Eros is a very elongated (34 kilometers by 11 kilometers by 11 kilometers) asteroid, most of the surface of which is saturated with craters smaller than 1 kilometer in diameter. The largest crater is 5.5 kilometers across, but there is a 10-kilometer saddle-like depression with attributes of a large degraded crater. Surface lineations, both grooves and ridges, are prominent on Eros; some probably exploit planes of weakness produced by collisions on Eros and/or its parent body. Ejecta blocks (30 to 100 meters across) are abundant but not uniformly distributed over the surface. Albedo variations are restricted to the inner walls of certain craters and may be related to downslope movement of regolith. On scales of 200 meters to 1 kilometer, Eros is more bland in terms of color variations than Gaspra or Ida. Spectra (800 to 2500 nanometers) are consistent with an ordinary chondrite composition for which the measured mean density of 2.67 +/- 0.1 grams per cubic centimeter implies internal porosities ranging from about 10 to 30 percent.

5.
Science ; 285(5427): 562-4, 1999 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-10417381

RESUMO

During the 23 December 1998 flyby of asteroid 433 Eros, the Near-Earth Asteroid Rendezvous (NEAR) spacecraft obtained 222 images of Eros, as well as supporting spectral observations. The images cover slightly more than two-thirds of Eros (best resolution is approximately 400 meters per pixel) and reveal an elongated, cratered body with a linear feature extending for at least 20 kilometers. Our observations show that Eros has dimensions of 33 x 13 x 13 kilometers. The volume, combined with the mass determined by the NEAR radio science experiment, leads to a density of 2.5 +/- 0.8 grams per cubic centimeter. This relatively high density, and the presence of an extensive linear feature, suggest that Eros may be a structurally coherent body.

6.
Science ; 278(5346): 2109-14, 1997 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-9405344

RESUMO

On 27 June 1997, the Near Earth Asteroid Rendezvous (NEAR) spacecraft flew within 1212 kilometers of asteroid 253 Mathilde. Mathilde is an irregular, heavily cratered body measuring 66 kilometers by 48 kilometers by 46 kilometers. The asteroid's surface is dark (estimated albedo between 0.035 and 0.050) and similar in color to some CM carbonaceous chondrites. No albedo or color variations were detected. The volume derived from the images and the mass from Doppler tracking of the spacecraft yield a mean density of 1.3 +/- 0.2 grams per cubic centimeter, about half that of CM chondrites, indicating a porous interior structure.

7.
Science ; 265(5178): 1543-7, 1994 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-17801529

RESUMO

The first images of the asteroid 243 Ida from Galileo show an irregular object measuring 56-kilometers by 24 kilometers by 21 kilometers. Its surface is rich in geologic features, including systems of grooves, blocks, chutes, albedo features, crater chains, and a full range of crater morphologies. The largest blocks may be distributed nonuniformly across the surface; lineaments and dark-floored craters also have preferential locations. Ida is interpreted to have a substantial regolith. The high crater density and size-frequency distribution (-3 differential power-law index) indicate a surface in equilibrium with saturated cratering. A minimum model crater age for Ida-and therefore for the Koronis family to which Ida belongs-is estimated at 1 billion years, older than expected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...