Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(2): e0340222, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36883821

RESUMO

Bacterivore nematodes are the most abundant animals in the biosphere, largely contributing to global biogeochemistry. Thus, the effects of environmental microbes on the nematodes' life-history traits are likely to contribute to the general health of the biosphere. Caenorhabditis elegans is an excellent model to study the behavioral and physiological outputs of microbial diets. However, the effects of complex natural bacterial assemblies have only recently been reported, as most studies have been carried out with monoxenic cultures of laboratory-reared bacteria. Here, we quantified the physiological, phenotypic, and behavioral traits of C. elegans feeding on two bacteria that were coisolated with wild nematodes from a soil sample. These bacteria were identified as a putative novel species of Stenotrophomonas named Stenotrophomonas sp. strain Iso1 and a strain of Bacillus pumilus designated Iso2. The distinctive behaviors and developmental patterns observed in animals fed with individual isolates changed when bacteria were mixed. We studied in more depth the degeneration rate of the touch circuit of C. elegans and show that B. pumilus alone is protective, while the mix with Stenotrophomonas sp. is degenerative. The analysis of the metabolite contents of each isolate and their combination identified NAD+ as being potentially neuroprotective. In vivo supplementation shows that NAD+ restores neuroprotection to the mixes and also to individual nonprotective bacteria. Our results highlight the distinctive physiological effects of bacteria resembling native diets in a multicomponent scenario rather than using single isolates on nematodes. IMPORTANCE Do behavioral choices depend on animals' microbiota? To answer this question, we studied how different bacterial assemblies impact the life-history traits of the bacterivore nematode C. elegans using isolated bacteria found in association with wild nematodes in Chilean soil. We identified the first isolate, Iso1, as a novel species of Stenotrophomonas and isolate Iso2 as Bacillus pumilus. We find that worm traits such as food choice, pharyngeal pumping, and neuroprotection, among others, are dependent on the biota composition. For example, the neurodegeneration of the touch circuit needed to sense and escape from predators in the wild decreases when nematodes are fed on B. pumilus, while its coculture with Stenotrophomonas sp. eliminates neuroprotection. Using metabolomics analysis, we identify metabolites such as NAD+, present in B. pumilus yet lost in the mix, as being neuroprotective and validated their protective effects using in vivo experiments.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/microbiologia , NAD/metabolismo , Nematoides/microbiologia , Bactérias/metabolismo , Solo
2.
Int J Mol Sci ; 22(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801118

RESUMO

Diabetic retinopathy (DR) is one of the main causes of vision loss in the working age population. It is characterized by a progressive deterioration of the retinal microvasculature, caused by long-term metabolic alterations inherent to diabetes, leading to a progressive loss of retinal integrity and function. The mammalian retina presents an orderly layered structure that executes initial but complex visual processing and analysis. Gap junction channels (GJC) forming electrical synapses are present in each retinal layer and contribute to the communication between different cell types. In addition, connexin hemichannels (HCs) have emerged as relevant players that influence diverse physiological and pathological processes in the retina. This article highlights the impact of diabetic conditions on GJC and HCs physiology and their involvement in DR pathogenesis. Microvascular damage and concomitant loss of endothelial cells and pericytes are related to alterations in gap junction intercellular communication (GJIC) and decreased connexin 43 (Cx43) expression. On the other hand, it has been shown that the expression and activity of HCs are upregulated in DR, becoming a key element in the establishment of proinflammatory conditions that emerge during hyperglycemia. Hence, novel connexin HCs blockers or drugs to enhance GJIC are promising tools for the development of pharmacological interventions for diabetic retinopathy, and initial in vitro and in vivo studies have shown favorable results in this regard.


Assuntos
Conexinas/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Suscetibilidade a Doenças , Junções Comunicantes/metabolismo , Animais , Conexinas/genética , Retinopatia Diabética/patologia , Junções Comunicantes/genética , Expressão Gênica , Humanos , Neuroglia/metabolismo , Retina/metabolismo , Retina/patologia
3.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672031

RESUMO

Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors-such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs-known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Conexinas/metabolismo , Canais Iônicos/metabolismo , Mastócitos/metabolismo , Estresse Fisiológico , Animais , Degranulação Celular , Citocinas/metabolismo , Humanos , Mastócitos/imunologia
4.
Front Immunol ; 12: 750480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975840

RESUMO

The role of Pannexin (PANX) channels during collective and single cell migration is increasingly recognized. Amongst many functions that are relevant to cell migration, here we focus on the role of PANX-mediated adenine nucleotide release and associated autocrine and paracrine signaling. We also summarize the contribution of PANXs with the cytoskeleton, which is also key regulator of cell migration. PANXs, as mechanosensitive ATP releasing channels, provide a unique link between cell migration and purinergic communication. The functional association with several purinergic receptors, together with a plethora of signals that modulate their opening, allows PANX channels to integrate physical and chemical cues during inflammation. Ubiquitously expressed in almost all immune cells, PANX1 opening has been reported in different immunological contexts. Immune activation is the epitome coordination between cell communication and migration, as leukocytes (i.e., T cells, dendritic cells) exchange information while migrating towards the injury site. In the current review, we summarized the contribution of PANX channels during immune cell migration and recruitment; although we also compile the available evidence for non-immune cells (including fibroblasts, keratinocytes, astrocytes, and cancer cells). Finally, we discuss the current evidence of PANX1 and PANX3 channels as a both positive and/or negative regulator in different inflammatory conditions, proposing a general mechanism of these channels contribution during cell migration.


Assuntos
Movimento Celular/fisiologia , Conexinas/fisiologia , Células Dendríticas/fisiologia , Leucócitos/fisiologia , Fagócitos/fisiologia , Nucleotídeos de Adenina/fisiologia , Envelhecimento/imunologia , Envelhecimento/fisiologia , Animais , Astrócitos/fisiologia , Polaridade Celular , Quimiotaxia de Leucócito/fisiologia , Citoesqueleto/fisiologia , Fibroblastos/fisiologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Queratinócitos/fisiologia , Mecanotransdução Celular/fisiologia , Neoplasias/imunologia , Degeneração Neural/imunologia , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Purinérgicos/fisiologia
5.
Exp Eye Res ; 190: 107866, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682845

RESUMO

The common degu (Octodon degus) is an emerging model in biomedical science research due to its longevity and propensity to develop human-like conditions. However, there is a lack of standardized techniques for this non-traditional laboratory animal. In an effort to characterize the model, we developed a chromatic pupillometry setup and analysis protocol to characterize the pupillary light reflex (PLR) in our animals. The PLR is a biomarker to detect early signs for central nervous system deterioration. Chromatic pupillometry is a non-invasive and anesthesia-free method that can evaluate different aspects of the PLR, including the response of intrinsically photosensitive retinal ganglion cells (ipRGCs), the disfunction of which has been linked to various disorders. We studied the PLR of 12 degus between 6 and 48 months of age to characterize responses to LEDs of 390, 450, 500, 525 and 605 nm, and used 5 with overall better responses to establish a benchmark for healthy PLR (PLR+) and deteriorated PLR (PLR-). Degu pupils contracted up to 65% of their horizontal resting size before reaching saturation. The highest sensitivity was found at 500 nm, with similar sensitivities at lower tested intensities for 390 nm, coinciding with the medium wavelength and short wavelength cones of the degu. We also tested the post-illumination pupillary response (PIPR), which is driven exclusively by ipRGCs. PIPR was largest in response to 450 nm light, with the pupil preserving 48% of its maximum constriction 9 s after the stimulus, in contrast with 24% preserved in response to 525 nm, response driven mainly by cones. PLR- animals showed maximum constriction between 40% and 50% smaller than PLR+, and their PIPR almost disappeared, pointing to a disfunction of the iPRGCs rather than the retinal photoreceptors. Our method thus allows us to non-invasively estimate the condition of experimental animals before attempting other procedures.


Assuntos
Octodon/fisiologia , Pupila/efeitos da radiação , Reflexo Pupilar/fisiologia , Animais , Feminino , Luz , Masculino , Células Fotorreceptoras de Vertebrados/fisiologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo
6.
Front Immunol ; 10: 2703, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849935

RESUMO

Mast cells (MCs) release pro-inflammatory mediators through a process called degranulation response. The latter may be induced by several conditions, including antigen recognition through immunoglobulin E (IgE) or "cross-linking," classically associated with Type I hypersensitivity reactions. Early in this reaction, Ca2+ influx and subsequent increase of intracellular free Ca2+ concentration are essential for MC degranulation. Several membrane channels that mediate Ca2+ influx have been proposed, but their role remains elusive. Here, we evaluated the possible contribution of pannexin-1 channels (Panx1 Chs), well-known as ATP-releasing channels, in the increase of intracellular Ca2+ triggered during cross-linking reaction of MCs. The contribution of Panx1 Chs in the degranulation response was evaluated in MCs from wild type (WT) and Panx1 knock out (Panx1-/-) mice after anti-ovalbumin (OVA) IgE sensitization. Notably, the degranulation response (toluidine blue and histamine release) was absent in Panx1-/- MCs. Moreover, WT MCs showed a rapid and transient increase in Ca2+ signal followed by a sustained increase after antigen stimulation. However, the sustained increase in Ca2+ signal triggered by OVA was absent in Panx1-/- MCs. Furthermore, OVA stimulation increased the membrane permeability assessed by dye uptake, a prevented response by Panx1 Ch but not by connexin hemichannel blockers and without effect on Panx1-/- MCs. Interestingly, the increase in membrane permeability of WT MCs was also prevented by suramin, a P2 purinergic inhibitor, suggesting that Panx1 Chs act as ATP-releasing channels impermeable to Ca2+. Accordingly, stimulation with exogenous ATP restored the degranulation response and sustained increase in Ca2+ signal of OVA stimulated Panx1-/- MCs. Moreover, opening of Panx1 Chs in Panx1 transfected HeLa cells increased dye uptake and ATP release but did not promote Ca2+ influx, confirming that Panx1 Chs permeable to ATP are not permeable to Ca2+. These data strongly suggest that during antigen recognition, Panx1 Chs contribute to the sustained Ca2+ signal increase via release of ATP that activates P2 receptors, playing a critical role in the sequential events that leads to degranulation response during Type I hypersensitivity reactions.


Assuntos
Degranulação Celular/fisiologia , Conexinas/imunologia , Hipersensibilidade Imediata/imunologia , Mastócitos/imunologia , Proteínas do Tecido Nervoso/imunologia , Animais , Conexinas/metabolismo , Células HeLa , Humanos , Hipersensibilidade Imediata/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo
7.
Sci Signal ; 10(506)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162744

RESUMO

Upon its release from injured cells, such as infected, transformed, inflamed, or necrotic cells, extracellular adenosine-5'-triphosphate (ATP) acts as a danger signal that recruits phagocytes, such as neutrophils, macrophages, and dendritic cells (DCs), to the site of injury. The sensing of extracellular ATP occurs through purinergic (P2) receptors. We investigated the cellular mechanisms linking purinergic signaling to DC motility. We found that ATP stimulated fast DC motility through an autocrine signaling loop, which was initiated by the activation of P2X7 receptors and further amplified by pannexin 1 (Panx1) channels. Upon stimulation of the P2X7 receptor by ATP, Panx1 contributed to fast DC motility by increasing the permeability of the plasma membrane, which resulted in supplementary ATP release. In the absence of Panx1, DCs failed to increase their speed of migration in response to ATP, despite exhibiting a normal P2X7 receptor-mediated Ca2+ response. In addition to DC migration, Panx1 channel- and P2X7 receptor-dependent signaling was further required to stimulate the reorganization of the actin cytoskeleton. In vivo, functional Panx1 channels were required for the homing of DCs to lymph nodes, although they were dispensable for DC maturation. These data suggest that P2X7 receptors and Panx1 channels are crucial players in the regulation of DC migration to endogenous danger signals.


Assuntos
Trifosfato de Adenosina/farmacologia , Conexinas/metabolismo , Células Dendríticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Cálcio/metabolismo , Permeabilidade da Membrana Celular , Movimento Celular , Células Cultivadas , Conexinas/genética , Conexinas/fisiologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/fisiologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Transdução de Sinais
8.
J Neurosci ; 35(25): 9526-38, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109673

RESUMO

Mast cells (MCs) store an array of proinflammatory mediators in secretory granules that are rapidly released upon activation by diverse conditions including amyloid beta (Aß) peptides. In the present work, we found a rapid degranulation of cultured MCs through a pannexin1 hemichannel (Panx1 HC)-dependent mechanism induced by Aß25-35 peptide. Accordingly, Aß25-35 peptide also increased membrane current and permeability, as well as intracellular Ca(2+) signal, mainly via Panx1 HCs because all of these responses were drastically inhibited by Panx1 HC blockers and absent in the MCs of Panx1(-/-) mice. Moreover, in acute coronal brain slices of control mice, Aß25-35 peptide promoted both connexin 43 (Cx43)- and Panx1 HC-dependent MC dye uptake and histamine release, responses that were only Cx43 HC dependent in Panx1(-/-) mice. Because MCs have been found close to amyloid plaques of patients with Alzheimer's disease (AD), their distribution in brain slices of APPswe/PS1dE9 mice, a murine model of AD, was also investigated. The number of MCs in hippocampal and cortical areas increased drastically even before amyloid plaque deposits became evident. Therefore, MCs might act as early sensors of amyloid peptide and recruit other cells to the neuroinflammatory response, thus playing a critical role in the onset and progression of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Mastócitos/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Western Blotting , Degranulação Celular/fisiologia , Modelos Animais de Doenças , Eletrofisiologia , Imunofluorescência , Células HeLa , Humanos , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/farmacologia , Transfecção
9.
Channels (Austin) ; 8(2): 142-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24590064

RESUMO

Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X 7 receptors (P2X 7Rs). However, a link between P2X 7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1-/- mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1-/- mice, in which levels of P2X 7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X 7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.


Assuntos
Trifosfato de Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Linfócitos T/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/fisiologia , Calcimicina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Conexinas/antagonistas & inibidores , Conexinas/genética , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Imagem com Lapso de Tempo
10.
Mediators Inflamm ; 2013: 893521, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935250

RESUMO

In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca(2+) influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.


Assuntos
Sistema Nervoso Central/metabolismo , Mastócitos/citologia , Neuroglia/metabolismo , Receptores Toll-Like/metabolismo , Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Conexinas/metabolismo , Feminino , Glucocorticoides/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Inflamação , Ligantes , Microglia/metabolismo , Gravidez , Complicações na Gravidez , Transdução de Sinais
11.
Mediators Inflamm ; 2013: 216402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737642

RESUMO

Microglia are the immune cells in the central nervous system. After injury microglia release bioactive molecules, including cytokines and ATP, which modify the functional state of hemichannels (HCs) and gap junction channels (GJCs), affecting the intercellular communication via extracellular and intracellular compartments, respectively. Here, we studied the role of extracellular ATP and several cytokines as modulators of the functional state of microglial HCs and GJCs using dye uptake and dye coupling techniques, respectively. In microglia and the microglia cell line EOC20, ATP advanced the TNF-α/IFN-γ-induced dye coupling, probably through the induction of IL-1ß release. Moreover, TNF-α/IFN-γ, but not TNF-α plus ATP, increased dye uptake in EOC20 cells. Blockade of Cx43 and Panx1 HCs prevented dye coupling induced by TNF-α/IFN-γ, but not TNF-α plus ATP. In addition, IL-6 prevented the induction of dye coupling and HC activity induced by TNF-α/IFN-γ in EOC20 cells. Our data support the notion that extracellular ATP affects the cellular communication between microglia through autocrine and paracrine mechanisms, which might affect the timing of immune response under neuroinflammatory conditions.


Assuntos
Citocinas/farmacologia , Junções Comunicantes/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Trifosfato de Adenosina , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Camundongos , Microglia/citologia , Ratos , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...