Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 8432, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439101

RESUMO

Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo.


Assuntos
Ossos do Pé/anatomia & histologia , Pé/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Animais , Evolução Biológica , Gorilla gorilla/anatomia & histologia , Humanos , Pan paniscus/anatomia & histologia , Pan troglodytes/anatomia & histologia , Pongo pygmaeus/anatomia & histologia
2.
J Evol Biol ; 25(2): 365-77, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22111918

RESUMO

Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form and feeding habits over their 160+ million year evolutionary history. Here, we utilize geometric morphometrics to study broad patterns in theropod skull shape variation and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the "typical" and ancestral theropod morphologies. Noncarnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny but only weakly correlated with functional biting behaviour. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Crânio/anatomia & histologia , Animais , Dieta , Dinossauros/fisiologia , Comportamento Alimentar , Fósseis , Filogenia , Crânio/fisiologia
3.
Nature ; 459(7243): 81-4, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19424155

RESUMO

Homo floresiensis is an endemic hominin species that occupied Liang Bua, a limestone cave on Flores in eastern Indonesia, during the Late Pleistocene epoch. The skeleton of the type specimen (LB1) of H. floresiensis includes a relatively complete left foot and parts of the right foot. These feet provide insights into the evolution of bipedalism and, together with the rest of the skeleton, have implications for hominin dispersal events into Asia. Here we show that LB1's foot is exceptionally long relative to the femur and tibia, proportions never before documented in hominins but seen in some African apes. Although the metatarsal robusticity sequence is human-like and the hallux is fully adducted, other intrinsic proportions and pedal features are more ape-like. The postcranial anatomy of H. floresiensis is that of a biped, but the unique lower-limb proportions and surprising combination of derived and primitive pedal morphologies suggest kinematic and biomechanical differences from modern human gait. Therefore, LB1 offers the most complete glimpse of a bipedal hominin foot that lacks the full suite of derived features characteristic of modern humans and whose mosaic design may be primitive for the genus Homo. These new findings raise the possibility that the ancestor of H. floresiensis was not Homo erectus but instead some other, more primitive, hominin whose dispersal into southeast Asia is still undocumented.


Assuntos
Ossos do Pé/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Animais , Ossos do Braço/anatomia & histologia , Tamanho Corporal , Hominidae/classificação , Humanos , Indonésia , Ossos da Perna/anatomia & histologia , Filogenia , Ossos do Tarso/anatomia & histologia
4.
J Anat ; 204(5): 403-16, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15198703

RESUMO

We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases of our evolutionary history than previously suspected.


Assuntos
Evolução Biológica , Pé/anatomia & histologia , Fósseis , Marcha/fisiologia , Postura/fisiologia , Animais , Hominidae/anatomia & histologia , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...