Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 12(2): 1837-1848, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29369611

RESUMO

Single-atom B or N substitutional doping in single-layer suspended graphene, realized by low-energy ion implantation, is shown to induce a dampening or enhancement of the characteristic interband π plasmon of graphene through a high-resolution electron energy loss spectroscopy study using scanning transmission electron microscopy. A relative 16% decrease or 20% increase in the π plasmon quality factor is attributed to the presence of a single substitutional B or N atom dopant, respectively. This modification is in both cases shown to be relatively localized, with data suggesting the plasmonic response tailoring can no longer be detected within experimental uncertainties beyond a distance of approximately 1 nm from the dopant. Ab initio calculations confirm the trends observed experimentally. Our results directly confirm the possibility of tailoring the plasmonic properties of graphene in the ultraviolet waveband at the atomic scale, a crucial step in the quest for utilizing graphene's properties toward the development of plasmonic and optoelectronic devices operating at ultraviolet frequencies.

2.
J Chem Phys ; 147(19): 194702, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166094

RESUMO

Silicon represents a common intrinsic impurity in graphene, bonding to either three or four carbon neighbors, respectively, in a single or double carbon vacancy. We investigate the effect of the latter defect (Si-C4) on the structural and electronic properties of graphene using density functional theory. Calculations based both on molecular models and with periodic boundary conditions have been performed. The two-carbon vacancy was constructed from pyrene (pyrene-2C) which was then expanded to circumpyrene-2C. The structural characterization of these cases revealed that the ground state is slightly non-planar, with the bonding carbons displaced from the plane by up to ±0.2 Å. This non-planar structure was confirmed by embedding the defect into a 10 × 8 supercell of graphene, resulting in 0.22 eV lower energy than the previously considered planar structure. Natural bond orbital analysis showed sp3 hybridization at the silicon atom for the non-planar structure and sp2d hybridization for the planar structure. Atomically resolved electron energy loss spectroscopy and corresponding spectrum simulations provide a mixed picture: a flat structure provides a slightly better overall spectrum match, but a small observed pre-peak is only present in the corrugated simulation. Considering the small energy barrier between the two equivalent corrugated conformations, both structures could plausibly exist as a superposition over the experimental time scale of seconds.

3.
ACS Nano ; 9(11): 11398-407, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26446310

RESUMO

A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations is used to describe the electronic structure modifications incurred by free-standing graphene through two types of single-atom doping. The N K and C K electron energy loss transitions show the presence of π* bonding states, which are highly localized around the N dopant. In contrast, the B K transition of a single B dopant atom shows an unusual broad asymmetric peak which is the result of delocalized π* states away from the B dopant. The asymmetry of the B K toward higher energies is attributed to highly localized σ* antibonding states. These experimental observations are then interpreted as direct fingerprints of the expected p- and n-type behavior of graphene doped in this fashion, through careful comparison with density functional theory calculations.

4.
Langmuir ; 29(23): 6876-83, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23675906

RESUMO

Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nanometer- to micrometer-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations, and amino acids. The data suggest that one-third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide undercoordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nanometer- to micrometer-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile.


Assuntos
Ácido Glutâmico/química , Titânio/química , Adsorção , Microscopia de Força Atômica , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...