Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 14(4): 258-272.e4, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080162

RESUMO

Combinatorial regulation of gene expression by transcription factors (TFs) may in part arise from kinetic synergy-wherein TFs regulate different steps in the transcription cycle. Kinetic synergy requires that TFs play distinguishable kinetic roles. Here, we used live imaging to determine the kinetic roles of three TFs that activate transcription in the Drosophila embryo-Zelda, Bicoid, and Stat92E-by introducing their binding sites into the even-skipped stripe 2 enhancer. These TFs influence different sets of kinetic parameters, and their influence can change over time. All three TFs increased the fraction of transcriptionally active nuclei; Zelda also shortened the first-passage time into transcription and regulated the interval between transcription events. Stat92E also increased the lifetimes of active transcription. Different TFs can therefore play distinct kinetic roles in activating the transcription. This has consequences for understanding the composition and flexibility of regulatory DNA sequences and the biochemical function of TFs. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Drosophila melanogaster , Animais , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cinética
2.
Nat Commun ; 11(1): 448, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974358

RESUMO

RNA polymerases (RNAPs) transcribe genes through a cycle of recruitment to promoter DNA, initiation, elongation, and termination. After termination, RNAP is thought to initiate the next round of transcription by detaching from DNA and rebinding a new promoter. Here we use single-molecule fluorescence microscopy to observe individual RNAP molecules after transcript release at a terminator. Following termination, RNAP almost always remains bound to DNA and sometimes exhibits one-dimensional sliding over thousands of basepairs. Unexpectedly, the DNA-bound RNAP often restarts transcription, usually in reverse direction, thus producing an antisense transcript. Furthermore, we report evidence of this secondary initiation in live cells, using genome-wide RNA sequencing. These findings reveal an alternative transcription cycle that allows RNAP to reinitiate without dissociating from DNA, which is likely to have important implications for gene regulation.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/enzimologia , Transcrição Gênica , Trifosfato de Adenosina/genética , Citidina Trifosfato/genética , DNA/genética , DNA/metabolismo , DNA Antissenso/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Microscopia de Fluorescência , Regiões Promotoras Genéticas , Imagem Individual de Molécula
3.
Cell Rep ; 26(9): 2407-2418.e5, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811990

RESUMO

Transcription of developmental genes is controlled by multiple enhancers. Frequently, more than one enhancer can activate transcription from the same promoter in the same cells. How is regulatory information from multiple enhancers combined to determine the overall expression output? We measure nascent transcription driven by a pair of shadow enhancers, each enhancer of the pair separately, and each duplicated, using live imaging in Drosophila embryos. This set of constructs allows us to quantify the input-output function describing signal integration by two enhancers. We show that signal integration performed by these shadow enhancers and duplications varies across the expression pattern, implying that how their activities are combined depends on the transcriptional regulators bound to the enhancers in different parts of the embryo. Characterizing signal integration by multiple enhancers is a critical step in developing conceptual and computational models of gene expression at the locus level, where multiple enhancers control transcription together.


Assuntos
Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , Regiões Promotoras Genéticas
4.
PLoS Genet ; 14(9): e1007644, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30192762

RESUMO

Hunchback is a bifunctional transcription factor that can activate and repress gene expression in Drosophila development. We investigated the regulatory DNA sequence features that control Hunchback function by perturbing enhancers for one of its target genes, even-skipped (eve). While Hunchback directly represses the eve stripe 3+7 enhancer, we found that in the eve stripe 2+7 enhancer, Hunchback repression is prevented by nearby sequences-this phenomenon is called counter-repression. We also found evidence that Caudal binding sites are responsible for counter-repression, and that this interaction may be a conserved feature of eve stripe 2 enhancers. Our results alter the textbook view of eve stripe 2 regulation wherein Hb is described as a direct activator. Instead, to generate stripe 2, Hunchback repression must be counteracted. We discuss how counter-repression may influence eve stripe 2 regulation and evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero , Elementos Facilitadores Genéticos/genética , Feminino , Proteínas de Homeodomínio/metabolismo , Masculino
5.
Development ; 144(21): 3855-3866, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089359

RESUMO

During development, genes are transcribed at specific times, locations and levels. In recent years, the emergence of quantitative tools has significantly advanced our ability to measure transcription with high spatiotemporal resolution in vivo Here, we highlight recent studies that have used these tools to characterize transcription during development, and discuss the mechanisms that contribute to the precision and accuracy of the timing, location and level of transcription. We attempt to disentangle the discrepancies in how physicists and biologists use the term 'precision' to facilitate interactions using a common language. We also highlight selected examples in which the coupling of mathematical modeling with experimental approaches has provided important mechanistic insights, and call for a more expansive use of mathematical modeling to exploit the wealth of quantitative data and advance our understanding of animal transcription.


Assuntos
Modelos Biológicos , Transcrição Gênica , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Tempo
6.
Proc Natl Acad Sci U S A ; 113(3): 602-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733675

RESUMO

Production of a messenger RNA proceeds through sequential stages of transcription initiation and transcript elongation and termination. During each of these stages, RNA polymerase (RNAP) function is regulated by RNAP-associated protein factors. In bacteria, RNAP-associated σ factors are strictly required for promoter recognition and have historically been regarded as dedicated initiation factors. However, the primary σ factor in Escherichia coli, σ(70), can remain associated with RNAP during the transition from initiation to elongation, influencing events that occur after initiation. Quantitative studies on the extent of σ(70) retention have been limited to complexes halted during early elongation. Here, we used multiwavelength single-molecule fluorescence-colocalization microscopy to observe the σ(70)-RNAP complex during initiation from the λ PR' promoter and throughout the elongation of a long (>2,000-nt) transcript. Our results provide direct measurements of the fraction of actively transcribing complexes with bound σ(70) and the kinetics of σ(70) release from actively transcribing complexes. σ(70) release from mature elongation complexes was slow (0.0038 s(-1)); a substantial subpopulation of elongation complexes retained σ(70) throughout transcript elongation, and this fraction depended on the sequence of the initially transcribed region. We also show that elongation complexes containing σ(70) manifest enhanced recognition of a promoter-like pause element positioned hundreds of nucleotides downstream of the promoter. Together, the results provide a quantitative framework for understanding the postinitiation roles of σ(70) during transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fator sigma/metabolismo , Transcrição Gênica , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Cinética , Lasers , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Fotodegradação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Moldes Genéticos , Fatores de Tempo , Elongação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...