Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R571-R580, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412389

RESUMO

Hyperglycemic conditions are prodromal to blood-brain barrier (BBB) impairment. The BBB comprises cerebral microvessel endothelial cells (CMECs) that are surrounded by astrocytic foot processes. Astrocytes express high levels of gap junction connexin 43 (Cx43), which play an important role in autocrine and paracrine signaling interactions that mediate gliovascular cross talk through secreted products. One of the key factors of the astrocytic "secretome" is vascular endothelial growth factor (VEGF), a potent angiogenic factor that can disrupt BBB integrity. We hypothesize that high-glucose conditions change the astrocytic expression of Cx43 and increase VEGF secretion leading to impairment of CMEC barrier properties in vitro and in vivo. Using coculture of neonatal rat astrocytes and CMEC, we mimic hyperglycemic conditions using high-glucose (HG) feeding media and show a significant decrease in Cx43 expression and the corresponding increase in secreted VEGF. This result was confirmed by the analyses of Cx43 and VEGF protein levels in the brain cortex samples from the type 2 diabetic rat (T2DN). To further characterize inducible changes in BBB, we measured transendothelial cell electrical resistance (TEER) and tight junction protein levels in cocultured conditioned astrocytes with isolated rat CMEC. The coculture monolayer's integrity and permeability were significantly compromised by HG media exposure, which was indicated by decreased TEER without a change in tight junction protein levels in CMEC. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross talk between astrocytes and CMEC, which could be one explanation for cerebral BBB disruption in diabetic conditions.


Assuntos
Astrócitos , Células Endoteliais , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Técnicas de Cocultura , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Microvasos/metabolismo , Ratos , Proteínas de Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
PLoS One ; 16(10): e0257896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34610026

RESUMO

INTRODUCTION: Peripheral artery disease (PAD) is a highly morbid condition in which impaired blood flow to the limbs leads to pain and tissue loss. Previously we identified 670 nm electromagnetic energy (R/NIR) to increase nitric oxide levels in cells and tissue. NO elicits relaxation of smooth muscle (SMC) by stimulating potassium efflux and membrane hyperpolarization. The actions of energy on ion channel activity have yet to be explored. Here we hypothesized R/NIR stimulates vasodilation through activation of potassium channels in SMC. METHODS: Femoral arteries or facial arteries from C57Bl/6 and Slo1-/- mice were isolated, pressurized to 60 mmHg, pre-constricted with U46619, and irradiated twice with energy R/NIR (10 mW/cm2 for 5 min) with a 10 min dark period between irradiations. Single-channel K+ currents were recorded at room temperature from cell-attached and excised inside-out membrane patches of freshly isolated mouse femoral arterial muscle cells using the patch-clamp technique. RESULTS: R/NIR stimulated vasodilation requires functional activation of the large conductance potassium channels. There is a voltage dependent outward current in SMC with light stimulation, which is due to increases in the open state probability of channel opening. R/NIR modulation of channel opening is eliminated pharmacologically (paxilline) and genetically (BKca α subunit knockout). There is no direct action of light to modulate channel activity as excised patches did not increase the open state probability of channel opening. CONCLUSION: R/NIR vasodilation requires indirect activation of the BKca channel.


Assuntos
Radiação Eletromagnética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos da radiação , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Vasodilatação/efeitos da radiação , Animais , Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/métodos , Artéria Femoral/metabolismo , Técnicas de Inativação de Genes , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Técnicas de Patch-Clamp , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/terapia
3.
Appl Opt ; 60(10): 2907-2911, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798172

RESUMO

There is a great need for cost-efficient non-invasive medical diagnostic tools for analyzing humanly exhaled air. Compared to present day methods, photoacoustic spectroscopy (PAS) can provide a compact and portable (bedside), sensitive and inexpensive solution. We demonstrate a novel portable photoacoustic spectroscopic platform for isotopic measurements of methane (CH4). We identify and discriminate the 12CH4- and 13CH4 isotopologues and determine their mixing ratio. An Allan deviation analysis shows that the noise equivalent concentration for CH4 is 200 ppt (pmol/mol) at 100 s of integration time, corresponding to a normalized noise equivalent absorption coefficient of 5.1×10-9Wcm-1Hz-1/2, potentially making the PAS sensor a truly disruptive instrument for bedside monitoring using isotope tracers by providing real-time metabolism data to clinical personnel.


Assuntos
Testes Respiratórios/métodos , Isótopos de Carbono/química , Metano/análise , Técnicas Fotoacústicas/métodos , Técnicas Biossensoriais , Testes Respiratórios/instrumentação , Desenho de Equipamento , Expiração , Humanos , Técnicas Fotoacústicas/instrumentação , Espectrofotometria Infravermelho
4.
Molecules ; 26(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503854

RESUMO

We report on the use of quartz-enhanced photoacoustic spectroscopy for continuous carbon-dioxide measurements in humid air over a period of six days. The presence of water molecules alters the relaxation rate of the target molecules and thus the amplitude of the photoacoustic signal. Prior to the measurements, the photoacoustic sensor system was pre-calibrated using CO2 mole fractions in the range of 0-10-3 (0-1000 ppm) and at different relative humidities between 0% and 45%, while assuming a model hypothesis that allowed the photoacoustic signal to be perturbed linearly by H2O content. This calibration technique was compared against an alternative learning-based method, where sensor data from the first two days of the six-day period were used for self-calibration. A commercial non-dispersive infrared sensor was used as a CO2 reference sensor and provided the benchmark for the two calibration procedures. In our case, the self-calibrated method proved to be both more accurate and precise.


Assuntos
Técnicas Fotoacústicas/métodos , Quartzo/química , Calibragem , Dióxido de Carbono/química , Análise Espectral/métodos , Água/química
5.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825631

RESUMO

Quartz-enhanced photoacoustic sensing is a promising method for low-concentration trace-gas monitoring due to the resonant signal enhancement provided by a high-Q quartz tuning fork. However, quartz-enhanced photoacoustic spectroscopy (QEPAS) is associated with a relatively slow acoustic decay, which results in a reduced spectral resolution and signal-to-noise ratio as the wavelength tuning rate is increased. In this work, we investigate the influence of wavelength scan rate on the spectral resolution and signal-to-noise ratio of QEPAS sensors. We demonstrate the acquisition of photoacoustic spectra from 3.1 µm to 3.6 µm using a tunable mid-infrared optical parametric oscillator. The spectra are attained using wavelength scan rates differing by more than two orders of magnitude (from 0.3 nm s-1 to 96 nm s-1). With this variation in scan rate, the spectral resolution is found to change from 2.5 cm-1 to 9 cm-1. The investigated gas samples are methane (in nitrogen) and a gas mixture consisting of methane, water, and ethanol. For the gas mixture, the reduced spectral resolution at fast scan rates significantly complicates the quantification of constituent gas concentrations.

6.
Brain Res ; 1732: 146702, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032612

RESUMO

In the brain, glucose enters astrocytes through glucose transporter (GLUT1) and either enters glycolysis or the glycogen shunt. Astrocytes meet the energy needs of neurons by building up and breaking down their glycogen supply. High glucose exposure causes astrocyte dysregulation, but its effects on glucose metabolism are relatively unknown. We hypothesized that high glucose conditioning induces a glycogenic state in the astrocyte, resulting in an inefficient mobilization of substrates when challenged with glucose deprivation. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5 mM) vs. high glucose (HG, 25 mM) feeding media and measured cell membrane GLUT1 expression, glucose analog uptake, glycogen content, and cellular bioenergetics. This study demonstrates that HG conditioning causes increased glucose analog uptake (p < 0.05) without affecting GLUT1 membrane expression when compared to NG conditioned astrocytes. Increased glucose uptake in HG astrocytes is associated with higher baseline glycogen content compared to NG exposed astrocytes (p < 0.05). When challenged with glucose deprivation, HG astrocytes break down more than double the amount of glycogen molecules compared to NG astrocytes, although they break down a similar percentage of the starting glycogen stores (NG = 62%, HG = 55%). Additionally, HG conditioning negatively impacts astrocyte maximal respiration and glycolytic reserve capacity assessed by the Seahorse mitochondrial stress test and glycolytic stress test, respectively (p < 0.05). These results suggest that HG conditioning shifts astrocytes towards glycogen storage at baseline. Despite increased glycogen storage, HG astrocytes demonstrate decreased metabolic efficiency and capacity putting them at higher risk during extended periods of glucose deprivation.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
NPJ Precis Oncol ; 3: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602400

RESUMO

Metastatic outcomes depend on the interactions of metastatic cells with a specific organ microenvironment. Our previous studies have shown that triple-negative breast cancer (TNBC) MDA-MB-231 cells passaged in astrocyte-conditioned medium (ACM) show proclivity to form brain metastases, but the underlying mechanism is unknown. The combination of microarray analysis, qPCR, and ELISA assay were carried out to demonstrate the ACM-induced expression of angiopoietin-like 4 (ANGPTL4) in TNBC cells. A stable ANGPTL4-knockdown MDA-MB-231 cell line was generated by ANGPTL4 short-hairpin RNA (shRNA) and inoculated into mice via left ventricular injection to evaluate the role of ANGPTL4 in brain metastasis formation. The approaches of siRNA, neutralizing antibodies, inhibitors, and immunoprecipitation were used to demonstrate the involved signaling molecules. We first found that ACM-conditioned TNBC cells upregulated the expression of ANGPTL4, a secreted glycoprotein whose effect on tumor progression is known to be tumor microenvironment- and tumor-type dependent. Knockdown of ANGPTL4 in TNBC MDA-MB-231 cells with shRNA decreased ACM-induced tumor cell metastatic growth in the brain and attributed to survival in a mouse model. Furthermore, we identified that astrocytes produced transforming growth factor-beta 2 (TGF-ß2), which in part is responsible for upregulation of ANGPTL4 expression in TNBC through induction of SMAD signaling. Moreover, we identified that tumor cells communicate with astrocytes, where tumor cell-derived interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α) increased the expression of TGF-ß2 in astrocytes. Collectively, these findings indicate that the invading TNBC cells interact with astrocytes in the brain microenvironment that facilitates brain metastases of TNBC cells through a TGF-ß2/ANGPTL4 axis. This provides groundwork to target ANGPTL4 as a treatment for breast cancer brain metastases.

8.
Heliyon ; 5(5): e01795, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193586

RESUMO

Angiogenesis is a highly complex and coordinated process in the brain. Under normal conditions, it is a vital process in growth and development, but under adverse conditions such as diabetes mellitus, it can lead to severe pathology. Astrocytes are a key constituent of the neurovascular unit and contribute to cerebral function, not only bridging the gap between metabolic supplies from blood vessels to neurons, but also regulating angiogenesis. Astrocytes affect angiogenesis by secreting angiogenic factors such as vascular endothelial growth factor (VEGF) into its microenvironment and regulating mitogenic activity in cerebral microvessel endothelial cells (CMEC). We hypothesized that astrocytes conditioned in high glucose media would produce and secrete decreased VEGF which would lead to impaired proliferation, migration, and tube formation of CMEC in vitro. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5mM) vs. high glucose (HG, 25mM) feeding media and measured VEGF message and protein levels as well as secreted VEGF. We co-cultured conditioned astrocytes with isolated rat CMEC and measured mitogenic activity of endothelial cells using BrdU assay, scratch recovery assay, and tube formation assay. HG astrocytes produced and secreted decreased VEGF protein and resulted in impaired mitogenic activity when co-cultured with CMEC as demonstrated by decreased BrdU uptake, decreased scratch recovery, and slower tube formation. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross-talk between astrocytes and CMEC which could be one explanation for cerebral microangiopathy seen in diabetic conditions.

9.
Appl Opt ; 58(2): 250-256, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645301

RESUMO

We demonstrate the usefulness of a nanosecond-pulsed single-mode mid-infrared (MIR) optical parametric oscillator (OPO) for photoacoustic (PA) spectroscopic measurements. The maximum wavelength ranges for the signal and idler are 1.4 µm to 1.7 µm and 2.8 µm to 4.6 µm, respectively, with a MIR output power of up to 500 mW, making the OPO useful for different spectroscopic PA trace-gas measurements targeting the major market opportunity of environmental monitoring and breath gas analysis. We perform spectroscopic measurements of methane (CH4), nitrogen dioxide (NO2), and ammonia (NH3) in the 2.8 µm to 3.7 µm wavelength region. The measurements were conducted with a constant flow rate of 300 mL/min, thus demonstrating the suitability of the gas sensor for real-time trace-gas measurements. The acquired spectra are compared with data from the HITRAN database, and good agreement is found, demonstrating a resolution bandwidth of 1.5 cm1. An Allan deviation analysis shows that the detection limit for methane at optimum integration time for the PA sensor is 8 ppbV (nmol/mol) at 105 s of integration time, corresponding to a normalized noise equivalent absorption coefficient of 2.9×10-7 W cm-1 Hz-1/2.

10.
Compr Physiol ; 8(2): 801-821, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29687906

RESUMO

There have been numerous reviews related to the cerebral circulation. Most of these reviews are similar in many ways. In the present review, we thought it important to provide an overview of function with specific attention to details of cerebral arterial control related to brain homeostasis, maintenance of neuronal energy demands, and a unique perspective related to the role of astrocytes. A coming review in this series will discuss cerebral vascular development and unique properties of the neonatal circulation and developing brain, thus, many aspects of development are missing here. Similarly, a review of the response of the brain and cerebral circulation to heat stress has recently appeared in this series (8). By trying to make this review unique, some obvious topics were not discussed in lieu of others, which are from recent and provocative research such as endothelium-derived hyperpolarizing factor, circadian regulation of proteins effecting cerebral blood flow, and unique properties of the neurovascular unit. © 2018 American Physiological Society. Compr Physiol 8:801-821, 2018.


Assuntos
Circulação Cerebrovascular/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Metabolismo dos Lipídeos/fisiologia , Ácido Araquidônico/metabolismo , Astrócitos/metabolismo , Pressão Sanguínea/fisiologia , Hipóxia Celular/fisiologia , Relógios Circadianos/fisiologia , Homeostase/fisiologia , Humanos , Potenciais da Membrana/fisiologia , Neovascularização Patológica/fisiopatologia
11.
Appl Opt ; 57(4): 802-806, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400761

RESUMO

A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA sensor is a stand-alone system controlled by a field-programmable gate array. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. The aim of the CFD analysis was to investigate and minimize the influence of the gas distribution and flow noise on the PA signal. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) and decane (C10H22) molecules in clean air at 2950 cm-1 (3.38 µm) with a custom-made mid-infrared interband cascade laser. We observe a (1σ, standard deviation) sensitivity of 0.4±0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 1.7 L/min, corresponding to a normalized noise equivalent absorption coefficient of 2.5×10-9 W cm-1 Hz-1/2, demonstrating high sensitivity and fast real-time gas analysis. An Allan deviation analysis for decane shows that the detection limit at optimum integration time is 0.25 ppbV (nmol/mol).

12.
J Synchrotron Radiat ; 24(Pt 5): 919-924, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862613

RESUMO

The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring, the transition region was redesigned. The control system was also updated to NSLS-II specifications. This paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.

13.
PLoS One ; 12(5): e0176796, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472069

RESUMO

The transient receptor potential vallinoid type 4 (TRPV4) is a calcium entry channel known to modulate vascular function by mediating endothelium-dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH) rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and activation of which increased the open state probability of KCa single-channel current in these arterial myocytes.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Hipertensão/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Canais de Cátion TRPV/fisiologia , Animais , Masculino , Ratos
14.
Cell Mol Neurobiol ; 37(7): 1279-1286, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28110484

RESUMO

20-Hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictor, is a cytochrome P450 (CYP) 4A/4F-derived metabolite of arachidonic acid. Inhibition of 20-HETE synthesis protects brain from ischemic injury. However, that protection is not associated with changes in cerebral blood flow. The present study examined whether CYP4A isoforms are expressed in neurons, whether they produce 20-HETE in neurons, and whether neuronally derived 20-HETE exerts direct neurotoxicity after oxygen-glucose deprivation (OGD). The expression of Cyp4a10 and Cyp4a12a mRNA in cultured mouse cortical neurons increased significantly at 1 and 3 h after exposure to 1 h of OGD. Reoxygenation also markedly augmented the expression of CYP4A protein in neurons and increased 20-HETE levels in the culture medium. Cell viability after OGD increased after treatment with a 20-HETE synthesis inhibitor or an antagonist. That effect was reversed by co-administration of a 20-HETE agonist. These results indicate that neurons express Cyp4a10 and 4a12a, that expression of these isoforms is upregulated by OGD stress, and that neuronally derived 20-HETE directly contributes to neuronal death after reoxygenation.


Assuntos
Córtex Cerebral/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Glucose/deficiência , Ácidos Hidroxieicosatetraenoicos/biossíntese , Neurônios/metabolismo , Oxigênio/metabolismo , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Isoformas de Proteínas/biossíntese , Regulação para Cima/fisiologia
15.
Opt Express ; 25(3): 1806-1814, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519033

RESUMO

We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 µm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

16.
J Neurochem ; 140(5): 814-825, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28002622

RESUMO

Epoxyeicosatrienoic acids (EETs) are synthesized in astrocytes, and inhibitors of soluble epoxide hydrolase (sEH), which hydrolyzes EETs, reduce infarct volume in ischemic stroke. Astrocytes can release protective neurotrophic factors, such as vascular endothelial growth factor (VEGF). We found that addition of sEH inhibitors to rat cultured astrocytes immediately after oxygen-glucose deprivation (OGD) markedly increased VEGF concentration in the medium 48 h later and the effect was blocked by an EET antagonist. The sEH inhibitors increased EET concentrations to levels capable of increasing VEGF. When the sEH inhibitors were removed from the medium at 48 h, the increase in VEGF persisted for an additional 48 h. Neurons exposed to OGD and subsequently to astrocyte medium previously conditioned with OGD plus sEH inhibitors showed increased phosphorylation of their VEGF receptor-2, less TUNEL staining, and increased phosphorylation of Akt, which was blocked by a VEGF receptor-2 antagonist. Our findings indicate that sEH inhibitors, applied to cultured astrocytes after an ischemia-like insult, can increase VEGF secretion. The released VEGF then enhances Akt-enabled cell survival signaling in neurons through activation of VEGF receptor-2 leading to less neuronal cell death. These results suggest a new strategy by which astrocytes can be leveraged to support neuroprotection.


Assuntos
Astrócitos/metabolismo , Hipóxia Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Glucose/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-27174801

RESUMO

Astrocytes secrete vasodilator and vasoconstrictor factors via end feet processes, altering blood flow to meet neuronal metabolic demand. Compared to what is known about the ability of astrocytes to release factors that dilate local cerebral vasculature, very little is known regarding the source and identity of astrocyte derived constricting factors. The present study investigated if astrocytes express CYP 4A ω-hydroxylase and metabolize arachidonic acid (AA) to 20-hydroxyeicotetraenoic acid (20-HETE) that regulates KCa channel activity in astrocytes and cerebral arterial myocyte contractility. Here we report that cultured astrocytes express CYP 4A2/3 ω-hydroxylase mRNA and CYP 4A protein and produce 20-HETE and the CYP epoxygenase metabolites epoxyeicosatrienoic acids (EETs) when incubated with AA. The production of 20-HETE and EETs was enhanced following stimulation of metabotropic glutamate receptors (mGluR) on the astrocytes. Exogenous application of 20-HETE attenuated, whereas inhibition of 20-HETE production with HET-0016 increased the open state probabilities (NPo) of 71pS and 161pS KCa single-channel currents recorded from astrocytes. Exposure of isolated cerebral arterial myocytes to conditioned media from cultured astrocytes caused shortening of the length of freshly isolated cerebral arterial myocytes that was not evident following inhibition of astrocyte 20-HETE synthesis and action. These findings suggest that astrocytes not only release vasodilator EETs in response to mGluR stimulation but also synthetize and release the cerebral arterial myocyte constrictor 20-HETE that also functions as an endogenous inhibitor of the activity of two types of KCa channel currents found in astrocytes.


Assuntos
Astrócitos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Ácidos Hidroxieicosatetraenoicos/biossíntese , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Encéfalo/metabolismo , Circulação Cerebrovascular/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Músculo Liso Vascular/metabolismo , Ratos , Receptores de Glutamato Metabotrópico/genética
18.
PLoS One ; 10(12): e0145335, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26683993

RESUMO

Cerebral arterial myogenic and autoregulatory responses are impaired in Fawn Hooded hypertensive (FHH) rats. Cerebral autoregulatory responses are restored in the congenic rat strain in which a segment of chromosome 1 from the Brown Norway (BN) rat was transferred into the FHH genetic background (FHH.1BN). The impact of this region on cerebral arterial dilator responses remains unknown. Aminopeptidase is a gene that was transferred into the FHH genetic background to generate the FHH.1BN rats and is responsible for degradation of the vasodilator bradykinin. Thus, we hypothesized that FHH rats will have increased aminopeptidase P levels with impaired cerebral arterial responses to bradykinin compared to BN and FHH.1BN rats. We demonstrated higher cerebral arterial expression of aminopeptidase P in FHH compared to BN rats. Accordingly, we demonstrated markedly impaired cerebral arterial dilation to bradykinin in FHH compared to BN rats. Interestingly, aminopeptidase P expression was lower in FHH.1BN compared to FHH rats. Decreased aminopeptidase P levels in FHH.1BN rats were associated with increased cerebral arterial bradykinin-induced dilator responses. Aminopeptidase P inhibition by apstatin improved cerebral arterial bradykinin dilator responses in FHH rats to a level similar to FHH.1BN rats. Unlike bradykinin, cerebral arterial responses to acetylcholine were similar between FHH and FHH.1BN groups. These findings indicate decreased bradykinin bioavailability contributes to impaired cerebral arterial dilation in FHH rats. Overall, these data indicate an important role of aminopeptidase P in the impaired cerebral arterial function in FHH rat.


Assuntos
Aminopeptidases/metabolismo , Bradicinina/farmacologia , Artérias Cerebrais/fisiopatologia , Hipertensão/enzimologia , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/genética , Animais , Anti-Hipertensivos/farmacologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/enzimologia , Expressão Gênica , Hipertensão/tratamento farmacológico , Masculino , Peptídeos/farmacologia , Ratos Endogâmicos , Vasodilatação
20.
J Appl Physiol (1985) ; 119(10): 1202-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792716

RESUMO

Adenosine A2A receptors and ATP-activated K(+) (KATP) channels contribute to part of the cerebral vasodilatory response to systemic hypoxia, but other mediators are likely involved. Epoxyeicosatrienoic acids (EETs) are cerebral vasodilators and are released from astrocytes exposed to hypoxia. Moreover, stimulation of metabotropic glutamate receptors (mGluR) produces vasodilation by an EET-dependent mechanism. Here, we tested the hypothesis that EET signaling and mGluR activation contribute to hypoxic vasodilation. Laser-Doppler flow was measured over cerebral cortex of anesthetized rats subjected to stepwise reductions in arterial oxygen saturation to 50-70%. Hypoxic reactivity was calculated as the slope of the change in laser-Doppler flow vs. the reciprocal of arterial oxygen content. Hypoxic reactivity significantly decreased from 9.2 ± 1.9 (±95% confidence interval) in controls with vehicle treatment to 2.6 ± 1.4 with the EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid, to 3.0 ± 1.5 with the EET synthesis inhibitor MS-PPOH, to 1.9 ± 2.3 with the combined mGluR subtype 1 and 5 antagonists 2-methyl-6-(phenylethynyl)pyridine and LY367385, to 5.6 ± 1.2 with the KATP channel inhibitor glibenclamide, and to 5.8 ± 2.3 with the A2A receptor antagonist SCH58261. However, reactivity was not significantly altered by the A2B receptor antagonist MRS1754 (6.7 ± 1.8; P = 0.28 Dunnett's test) or by the 20-hydroxyeicosatetraenoic acid synthesis inhibitor HET0016 (7.5 ± 2.3; P = 0.6). These data indicate that, in addition to the known contributions of A2A receptors and KATP channels to the increase in cerebral blood flow during hypoxia, EETs and mGluRs make a major contribution, possibly by mGluR stimulation and hypoxia-induced release of EETs. In contrast, A2B receptors do not make a major contribution, and 20-hydroxyeicosatetraenoic acid does not significantly limit hypoxic vasodilation.


Assuntos
Circulação Cerebrovascular/fisiologia , Eicosanoides/metabolismo , Hipóxia/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Ácidos Eicosanoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...