Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(6): 3327-3338, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30688319

RESUMO

Perovskite oxides are active room-temperature bifunctional oxygen electrocatalysts in alkaline media, capable of performing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with lower combined overpotentials relative to their precious metal counterparts. However, their semiconducting nature necessitates the use of activated carbons as conductive supports to generate applicably relevant current densities. In efforts to advance the performance and theory of oxide electrocatalysts, the chemical and physical properties of the oxide material often take precedence over contributions from the conductive additive. In this work, we find that carbon plays an important synergistic role in improving the performance of La1-xSrxCoO3-δ (0 ≤ x ≤ 1) electrocatalysts through the activation of O2 and spillover of radical oxygen intermediates, HO2- and O2-, which is further reduced through chemical decomposition of HO2- on the perovskite surface. Through a combination of thin-film rotating disk electrochemical characterization of the hydrogen peroxide intermediate reactions (hydrogen peroxide reduction reaction (HPRR), hydrogen peroxide oxidation reaction (HPOR)) and oxygen reduction reaction (ORR), surface chemical analysis, HR-TEM, and microkinetic modeling on La1-xSrxCoO3-δ (0 ≤ x ≤ 1)/carbon (with nitrogen and non-nitrogen doped carbons) composite electrocatalysts, we deconvolute the mechanistic aspects and contributions to reactivity of the oxide and carbon support.

2.
Nat Commun ; 9(1): 3150, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089833

RESUMO

The electrolysis of water is of global importance to store renewable energy and the methodical design of next-generation oxygen evolution catalysts requires a greater understanding of the structural and electronic contributions that give rise to increased activities. Herein, we report a series of Ruddlesden-Popper La0.5Sr1.5Ni1-xFexO4±Î´ oxides that promote charge transfer via cross-gap hybridization to enhance electrocatalytic water splitting. Using selective substitution of lanthanum with strontium and nickel with iron to tune the extent to which transition metal and oxygen valence bands hybridize, we demonstrate remarkable catalytic activity of 10 mA cm-2 at a 360 mV overpotential and mass activity of 1930 mA mg-1ox at 1.63 V via a mechanism that utilizes lattice oxygen. This work demonstrates that Ruddlesden-Popper materials can be utilized as active catalysts for oxygen evolution through rational design of structural and electronic configurations that are unattainable in many other crystalline metal oxide phases.

3.
Nat Commun ; 7: 11053, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27006166

RESUMO

Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B-O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co-O bond and the concentration of oxygen vacancies are controlled through Sr(2+) substitution into La(1-x)Sr(x)CoO(3-δ) . We attempt to rationalize the high activities of La(1-x)Sr(x)CoO(3-δ) through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.

4.
Nat Mater ; 13(7): 726-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880729

RESUMO

Perovskite oxides have attracted significant attention as energy conversion materials for metal-air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage.

5.
Bioconjug Chem ; 24(6): 878-88, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23631707

RESUMO

Anisotropic gold nanorods provide a convenient combination of properties, such as tunability of plasmon resonances and strong extinction cross sections in the near-infrared to red spectral region. These properties have created significant interest in the development of antibody conjugation methods for synthesis of targeted nanorods for a number of biomedical applications, including molecular specific imaging and therapy. Previously published conjugation approaches have achieved molecular specificity. However, the current conjugation methods have several downsides including low stability and potential cytotoxicity of bioconjugates that are produced by electrostatic interactions, as well as lack of control over antibody orientation during covalent conjugation. Here we addressed these shortcomings by introducing directional antibody conjugation to the gold nanorod surface. The directional conjugation is achieved through the carbohydrate moiety, which is located on one of the heavy chains of the Fc portion of most antibodies. The carbohydrate is oxidized under mild conditions to a hydrazide reactive aldehyde group. Then, a heterofunctional linker with hydrazide and dithiol groups is used to attach antibodies to gold nanorods. The directional conjugation approach was characterized using electron microscopy, zeta potential, and extinction spectra. We also determined spectral changes associated with nanorod aggregation; these spectral changes can be used as a convenient quality control of nanorod bioconjugates. Molecular specificity of the synthesized antibody targeted nanorods was demonstrated using hyperspectral, optical and photoacoustic imaging of cancer cell culture models. Additionally, we observed characteristic changes in optical spectra of molecular specific nanorods after their interactions with cancer cells; the observed spectral signatures can be explored for sensitive cancer detection.


Assuntos
Anticorpos/química , Ouro/química , Imagem Molecular , Nanotubos/química , Neoplasias/diagnóstico , Adsorção , Animais , Anticorpos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Neoplasias/tratamento farmacológico , Eletricidade Estática , Propriedades de Superfície
6.
J Am Chem Soc ; 135(21): 7799-802, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23565806

RESUMO

The adsorption of even a single serum protein molecule on a gold nanosphere used in biomedical imaging may increase the size too much for renal clearance. In this work, we designed charged ~5 nm Au nanospheres coated with binary mixed-charge ligand monolayers that do not change in size upon incubation in pure fetal bovine serum (FBS). This lack of protein adsorption was unexpected in view of the fact that the Au surface was moderately charged. The mixed-charge monolayers were composed of anionic citrate ligands modified by place exchange with naturally occurring amino acids: either cationic lysine or zwitterionic cysteine ligands. The zwitterionic tips of either the lysine or cysteine ligands interact weakly with the proteins and furthermore increase the distance between the "buried" charges closer to the Au surface and the interacting sites on the protein surface. The ~5 nm nanospheres were assembled into ~20 nm diameter nanoclusters with strong near-IR absorbance (of interest in biomedical imaging and therapy) with a biodegradable polymer, PLA(1k)-b-PEG(10k)-b-PLA(1k). Upon biodegradation of the polymer in acidic solution, the nanoclusters dissociated into primary ~5 nm Au nanospheres, which also did not adsorb any detectable serum protein in undiluted FBS.


Assuntos
Proteínas Sanguíneas/química , Ouro/química , Nanopartículas Metálicas/química , Soro , Adsorção , Animais , Bovinos , Espectroscopia de Luz Próxima ao Infravermelho
7.
J Phys Chem Lett ; 4(8): 1254-9, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26282138

RESUMO

Perovskites are of great interest as replacements for precious metals and oxides used in bifunctional air electrodes involving the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Herein, we report the synthesis and activity of a phase-pure nanocrystal perovskite catalyst that is highly active for the OER and ORR. The OER mass activity of LaNiO3, synthesized by the calcination of a rapidly dried nanoparticle dispersion and supported on nitrogen-doped carbon, is demonstrated to be nearly 3-fold that of 6 nm IrO2 and exhibits no hysteresis during oxygen evolution. Moreover, strong OER/ORR bifunctionality is shown by the low total overpotential (1.02 V) between the reactions, on par or better than that of noble metal catalysts such as Pt (1.16 V) and Ir (0.92 V). These results are examined in the context of surface hydroxylation, and a new OER cycle is proposed that unifies theory and the unique surface properties of LaNiO3.

8.
J Am Chem Soc ; 134(23): 9812-9, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22594532

RESUMO

The ability to design and characterize uniform, bimetallic alloy nanoparticles, where the less active metal enhances the activity of the more active metal, would be of broad interest in catalysis. Herein, we demonstrate that simultaneous reduction of Ag and Pd precursors provides uniform, Ag-rich AgPd alloy nanoparticles (~5 nm) with high activities for the oxygen reduction reaction (ORR) in alkaline media. The particles are crystalline and uniformly alloyed, as shown by X-ray diffraction and probe corrected scanning transmission electron microscopy. The ORR mass activity per total metal was 60% higher for the AgPd(2) alloy relative to pure Pd. The mass activities were 2.7 and 3.2 times higher for Ag(9)Pd (340 mA/mg(metal)) and Ag(4)Pd (598 mA/mg(metal)), respectively, than those expected for a linear combination of mass activities of Ag (60 mA/mg(Ag)) and Pd (799 mA/mg(Pd)) particles, based on rotating disk voltammetry. Moreover, these synergy factors reached 5-fold on a Pd mass basis. For silver-rich alloys (Ag(≥4)Pd), the particle surface is shown to contain single Pd atoms surrounded by Ag from cyclic voltammetry and CO stripping measurements. This morphology is favorable for the high activity through a combination of modified electronic structure, as shown by XPS, and ensemble effects, which facilitate the steps of oxygen bond breaking and desorption for the ORR. This concept of tuning the heteroatomic interactions on the surface of small nanoparticles with low concentrations of precious metals for high synergy in catalytic activity may be expected to be applicable to a wide variety of nanoalloys.


Assuntos
Ligas/química , Nanopartículas/química , Oxigênio/química , Paládio/química , Prata/química , Catálise , Técnicas Eletroquímicas , Elétrons , Nanopartículas/ultraestrutura , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...