Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 10(4): 918-923, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31056486

RESUMO

A rickettsial isolate was obtained from a partially engorged Ixodes pacificus female, which was collected from Humboldt County, California. The isolate was provisionally named Rickettsia endosymbiont Ixodes pacificus (REIP). The REIP isolate displayed the highest nucleotide sequence identity to Rickettsia species phylotype G021 in I. pacificus (99%, 99%, and 100% for ompA, 16S rRNA, and gltA, respectively), a bacterium that was previously identified in I. pacifiucs by PCR. Analysis of sequences from complete opening frames of five genes, 16S rRNA, gltA, ompA, ompB, and sca4, provided inference to the bacteria's classification among other Rickettsia species. The REIP isolate displayed 99.8%, 99.4%, 99.2%, 99.5%, and 99.6% nucleotide sequence identity for 16S rRNA, gltA, ompA, ompB, and sca4 gene, respectively, with genes of 'R. monacensis' str. IrR/Munich, indicating the REIP isolate is closely related to 'R. monacensis'. Our suggestion was further supported by phylogenetic analysis using concatenated sequences of 16S rRNA, gltA, ompA, ompB, and sca4 genes, concatenated sequences of dksA-xerC, mppA-purC, and rpmE-tRNAfMet intergenic spacer regions. Both phylogenetic trees implied that the REIP isolate is most closely related to 'R. monacensis' str. IrR/Munich. We propose the bacterium be considered as 'Rickettsia monacensis' str. Humboldt for its closest phylogenetic relative (=DSM 103975 T = ATCC TSD-94 T).


Assuntos
DNA Bacteriano/genética , Ixodes/microbiologia , Ovário/microbiologia , Rickettsia/classificação , Rickettsia/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , California , DNA Intergênico , Feminino , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Stem Cells ; 35(4): 909-919, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28248004

RESUMO

Pluripotent stem cells are a promising source of endothelial cells (ECs) for the treatment of vascular diseases. We have developed a robust protocol to differentiate human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) into ECs with high purities (94%-97% CD31+ and 78%-83% VE-cadherin+ ) in 8 days without cell sorting. Passaging of these cells yielded a nearly pure population of ECs (99% of CD31+ and 96.8% VE-cadherin+ ). These ECs also expressed other endothelial markers vWF, Tie2, NOS3, and exhibited functions of ECs such as uptake of Dil-acetylated low-density lipoprotein and formation of tubes in vitro or vessels in vivo on matrigel. We found that FGF2, VEGF, and BMP4 synergistically induced early vascular progenitors (VPs) from hiPSC-derived mesodermal cells. The MAPK and PI3K pathways are crucial not only for the initial commitment to vascular lineages but also for the differentiation of vascular progenitors to ECs, most likely through regulation of the ETS family transcription factors, ERG and FLI1. We revealed novel roles of the p38 and JNK MAPK pathways on EC differentiation. Furthermore, inhibition of the ERK pathway markedly promoted the differentiation of smooth muscle cells. Finally, we demonstrate that pluripotent stem cell-derived ECs are capable of forming patent blood vessels that were connected to the host vasculature in the ischemic limbs of immune deficient mice. Thus, we demonstrate that ECs can be efficiently derived from hiPSCs and hESCs, and have great potential for vascular therapy as well as for mechanistic studies of EC differentiation. Stem Cells 2017;35:909-919.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Células-Tronco Pluripotentes Induzidas/citologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Humanos , Mesoderma/citologia , Camundongos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
3.
Mol Ther Methods Clin Dev ; 3: 16053, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610394

RESUMO

Numerous clinical trials are utilizing mesenchymal stem cells (MSC) to treat critical limb ischemia, primarily for their ability to secrete signals that promote revascularization. These cells have demonstrated clinical safety, but their efficacy has been limited, possibly because these paracrine signals are secreted at subtherapeutic levels. In these studies the combination of cell and gene therapy was evaluated by engineering MSC with a lentivirus to overexpress vascular endothelial growth factor (VEGF). To achieve clinical compliance, the number of viral insertions was limited to 1-2 copies/cell and a constitutive promoter with demonstrated clinical safety was used. MSC/VEGF showed statistically significant increases in blood flow restoration as compared with sham controls, and more consistent improvements as compared with nontransduced MSC. Safety of MSC/VEGF was assessed in terms of genomic stability, rule-out tumorigenicity, and absence of edema or hemangiomas in vivo. In terms of retention, injected MSC/VEGF showed a steady decline over time, with a very small fraction of MSC/VEGF remaining for up to 4.5 months. Additional safety studies completed include absence of replication competent lentivirus, sterility tests, and absence of VSV-G viral envelope coding plasmid. These preclinical studies are directed toward a planned phase 1 clinical trial to treat critical limb ischemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...