Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(10): 670, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35970905

RESUMO

River otters (Lontra canadensis) are apex predators that bioaccumulate contaminants via their diet, potentially serving as biomonitors of watershed health. They reside throughout the Green-Duwamish River, WA (USA), a watershed encompassing an extreme urbanization gradient, including a US Superfund site slated for a 17-year remediation. The objectives of this study were to document baseline contaminant levels in river otters, assess otters' utility as top trophic-level biomonitors of contaminant exposure, and evaluate the potential for health impacts on this species. We measured a suite of contaminants of concern, lipid content, nitrogen stable isotopes (δ15N), and microsatellite DNA markers in 69 otter scat samples collected from twelve sites. Landcover characteristics were used to group sampling sites into industrial (Superfund site), suburban, and rural development zones. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ether flame-retardants (PBDEs), dichlorodiphenyl-trichloroethane and its metabolites (DDTs), and polycyclic aromatic hydrocarbons (PAHs) increased significantly with increasing urbanization, and were best predicted by models that included development zone, suggesting that river otters are effective biomonitors, as defined in this study. Diet also played an important role, with lipid content, δ15N or both included in all best models. We recommend river otter scat be included in evaluating restoration efforts in this Superfund site, and as a potentially useful monitoring tool wherever otters are found. We also report ΣPCB and ΣPAH exposures among the highest published for wild river otters, with almost 70% of samples in the Superfund site exceeding established levels of concern.


Assuntos
Poluentes Ambientais , Lontras , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/análise , Lipídeos , Poluentes Químicos da Água/análise
2.
Aquat Toxicol ; 229: 105654, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33161306

RESUMO

Understanding how aquatic organisms respond to complex chemical mixtures remains one of the foremost challenges in modern ecotoxicology. Although oil spills are typically high-profile disasters that release hundreds or thousands of chemicals into the environment, there is growing evidence for a common adverse outcome pathway (AOP) for the vulnerable embryos and larvae of fish species that spawn in oiled habitats. Molecular initiating events involve the disruption of excitation-contraction coupling in individual cardiomyocytes, which then dysregulate the form and function of the embryonic heart. Phenanthrenes and other three-ring (tricyclic) polycyclic aromatic hydrocarbons (PAHs) are key drivers for this developmental cardiotoxicity and are also relatively enriched in land-based urban runoff. Similar to oil spills, stormwater discharged from roadways and other high-traffic impervious surfaces contains myriad contaminants, many of which are uncharacterized in terms of their chemical identity and toxicity to aquatic organisms. Nevertheless, given the exceptional sensitivity of the developing heart to tricyclic PAHs and the ubiquitous presence of these compounds in road runoff, cardiotoxicity may also be a dominant aspect of the stormwater-induced injury phenotype in fish early life stages. Here we assessed the effects of traffic-related runoff on the embryos and early larvae of Pacific herring (Clupea pallasii), a marine forage fish that spawns along the coastline of western North America. We used the well-characterized central features of the oil toxicity AOP for herring embryos as benchmarks for a detailed analysis of embryolarval cardiotoxicity across a dilution gradient ranging from 12 to 50% stormwater diluted in clean seawater. These injury indicators included measures of circulatory function, ventricular area, heart chamber looping, and the contractility of both the atrium and the ventricle. We also determined tissue concentrations of phenanthrenes and other PAHs in herring embryos. We find that tricyclic PAHs are readily bioavailable during cardiogenesis, and that stormwater-induced toxicity is in many respects indistinguishable from canonical crude oil toxicity. Given the chemical complexity of urban runoff, non-tricyclic PAH-mediated mechanisms of developmental toxicity in fish remain likely. However, from the standpoint of managing wild herring populations, our results suggest that stormwater-driven threats to individual survival (both near-term and delayed mortality) can be understood from decades of past research on crude oil toxicity. Moreover, Pacific herring embryos are promising sentinels for water quality monitoring in nearshore marine habitats, as in situand sensitive indicators of both toxic runoff and the effectiveness of pollution reduction efforts such as green stormwater infrastructure.


Assuntos
Organismos Aquáticos/fisiologia , Peixes/embriologia , Coração/embriologia , Petróleo/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/diagnóstico por imagem , Embrião não Mamífero/efeitos dos fármacos , Feminino , Peixes/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Larva/efeitos dos fármacos , Masculino , Peso Molecular , América do Norte , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água/química , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 712: 135516, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806347

RESUMO

Understanding the spatial extent, magnitude, and source of contaminant exposure in biota is necessary to formulate appropriate conservation measures to reduce or remediate contaminant exposure. However, obtaining such information for migratory animals is challenging. Juvenile Chinook salmon (Oncorhynchus tshawytscha), a threatened species throughout the US Pacific Northwest, are exposed to persistent organic pollutants (POPs), including polybrominated diphenyl ether (PBDE) flame retardants and polychlorinated biphenyls (PCBs), in many developed rivers and estuaries. This study used three types of complementary chemical tracer data (contaminant concentrations, POP fingerprints, and stable isotopes), to determine the location and source of contaminant exposure for natural- and hatchery-origin Chinook salmon migrating seaward through a developed watershed with multiple contaminant sources. Concentration data revealed that salmon were exposed to and accumulated predominantly PBDEs and PCBs in the lower mainstem region of the river, with higher PBDEs in natural- than hatchery-origin fish but similar PCBs in both groups, associated with differences in contaminant inputs and/or habitat use. The POP fingerprints of the natural-origin-fish captured from this region were also distinct from other region and origin sample groups, with much higher proportions of PBDEs in the total POP concentration, indicating a different contaminant source or habitat use than the hatchery-origin fish. Stable isotopes, independent tracers of food sources and habitat use, revealed that natural-origin fish from this region also had depleted δ15N signatures compared to other sample groups, associated with exposure to nutrient-rich wastewater. The PBDE-enhanced POP fingerprints in these salmon were correlated with the degree of depletion in nitrogen stable isotopes of the fish, suggesting a common wastewater source for both the PBDEs and the nitrogen. Identification of the location and source of contaminant exposure allows environmental managers to establish conservation measures to control contaminant inputs, necessary steps to improve the health of Chinook salmon and enhance their marine survival.


Assuntos
Salmão , Animais , Poluentes Ambientais , Estuários , Noroeste dos Estados Unidos , Bifenilos Policlorados , Poluentes Químicos da Água
4.
Aquat Toxicol ; 178: 118-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27475653

RESUMO

It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17ß-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish.


Assuntos
Disruptores Endócrinos/toxicidade , Gonadotropinas Hipofisárias/metabolismo , Oncorhynchus kisutch/metabolismo , Hipófise/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Etinilestradiol/toxicidade , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Expressão Gênica/efeitos dos fármacos , Gonadotropinas Hipofisárias/genética , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Oncorhynchus kisutch/crescimento & desenvolvimento , Hipófise/metabolismo , RNA Mensageiro/metabolismo , Acetato de Trembolona/toxicidade , Eliminação de Resíduos Líquidos
5.
Aquat Toxicol ; 142-143: 146-63, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24007788

RESUMO

Considerable research has been done on the effects of endocrine disrupting chemicals (EDCs) on reproduction and gene expression in the brain, liver and gonads of teleost fish, but information on impacts to the pituitary gland are still limited despite its central role in regulating reproduction. The aim of this study was to further our understanding of the potential effects of natural and synthetic estrogens on the brain-pituitary-gonad axis in fish by determining the effects of 17α-ethynylestradiol (EE2) on the pituitary transcriptome. We exposed sub-adult coho salmon (Oncorhynchus kisutch) to 0 or 12 ng EE2/L for up to 6 weeks and effects on the pituitary transcriptome of females were assessed using high-throughput Illumina(®) sequencing, RNA-Seq and pathway analysis. After 1 or 6 weeks, 218 and 670 contiguous sequences (contigs) respectively, were differentially expressed in pituitaries of EE2-exposed fish relative to control. Two of the most highly up- and down-regulated contigs were luteinizing hormone ß subunit (241-fold and 395-fold at 1 and 6 weeks, respectively) and follicle-stimulating hormone ß subunit (-3.4-fold at 6 weeks). Additional contigs related to gonadotropin synthesis and release were differentially expressed in EE2-exposed fish relative to controls. These included contigs involved in gonadotropin releasing hormone (GNRH) and transforming growth factor-ß signaling. There was an over-representation of significantly affected contigs in 33 and 18 canonical pathways at 1 and 6 weeks, respectively, including circadian rhythm signaling, calcium signaling, peroxisome proliferator-activated receptor (PPAR) signaling, PPARα/retinoid x receptor α activation, and netrin signaling. Network analysis identified potential interactions between genes involved in circadian rhythm and GNRH signaling, suggesting possible effects of EE2 on timing of reproductive events.


Assuntos
Etinilestradiol/toxicidade , Oncorhynchus kisutch/fisiologia , Hipófise/efeitos dos fármacos , Transcriptoma , Poluentes Químicos da Água/toxicidade , Animais , Sistema Endócrino/efeitos dos fármacos , Feminino , Hormônio Foliculoestimulante/genética , Gônadas/efeitos dos fármacos , Hormônio Luteinizante/genética , Oncorhynchus kisutch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...