Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Microbiol Immunol ; 303: 1-27, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16570854

RESUMO

Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS.


Assuntos
Viroses do Sistema Nervoso Central/imunologia , Quimiocinas/fisiologia , Infecções por Coronavirus/imunologia , Vírus da Hepatite Murina , Receptores de Quimiocinas/fisiologia , Animais , Doenças Desmielinizantes/imunologia , Encefalite Viral/imunologia , Humanos
2.
J Neurophysiol ; 84(5): 2380-9, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11067980

RESUMO

The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in many persons with temporal lobe epilepsy. The new connections among granule cells provide a novel mechanism of synchronization that could enhance the participation of these cells in seizures. Despite the presence of robust recurrent mossy fiber growth, orthodromic or antidromic activation of granule cells usually does not evoke repetitive discharge. This study tested the ability of modestly elevated [K(+)](o), reduced GABA(A) receptor-mediated inhibition and frequency facilitation to unmask the effect of recurrent excitation. Transverse slices of the caudal hippocampal formation were prepared from pilocarpine-treated rats that either had or had not developed status epilepticus with subsequent recurrent mossy fiber growth. During superfusion with standard medium (3.5 mM K(+)), antidromic stimulation of the mossy fibers evoked epileptiform activity in 14% of slices with recurrent mossy fiber growth. This value increased to approximately 50% when [K(+)](o) was raised to either 4.75 or 6 mM. Addition of bicuculline (3 or 30 microM) to the superfusion medium did not enhance the probability of evoking epileptiform activity but did increase the magnitude of epileptiform discharge if such activity was already present. (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (1 microM), which selectively activates type II metabotropic glutamate receptors present on mossy fiber terminals, strongly depressed epileptiform responses. This result implies a critical role for the recurrent mossy fiber pathway. No enhancement of the epileptiform discharge occurred during repetitive antidromic stimulation at frequencies of 0.2, 1, or 10 Hz. In fact, antidromically evoked epileptiform activity became progressively attenuated during a 10-Hz train. Antidromic stimulation of the mossy fibers never evoked epileptiform activity in slices from control rats under any condition tested. These results indicate that even modest changes in [K(+)](o) dramatically affect granule cell epileptiform activity supported by the recurrent mossy fiber pathway. A small increase in [K(+)](o) reduces the amount of recurrent mossy fiber growth required to synchronize granule cell discharge. Block of GABA(A) receptor-mediated inhibition is less efficacious and frequency facilitation may not be a significant factor.


Assuntos
Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal/fisiologia , Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Anticonvulsivantes/farmacologia , Bicuculina/farmacologia , Ciclopropanos/farmacologia , Espaço Extracelular/metabolismo , Antagonistas GABAérgicos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Masculino , Agonistas Muscarínicos , Pilocarpina , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
3.
Oecologia ; 96(4): 537-547, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28312460

RESUMO

Blue oak (Quercus douglasii) is a deciduous tree species endemic to California that currently exhibits poor seedling survival to sapling age classes. We used common garden techniques to examine how genetic variation at regional and local scales affected phenotypic expression in traits affecting oak seedling growth and survival. Between-population variation was examined for seedlings grown from acorns collected from a northern, mesic population and a southern, xeric population. Within-population variation was examined by comparing seedlings from different maternal families within the mesic population. Acorns were planted into neighborhoods of an annual dicot (Erodium botrys), an annual grass (Bromus diandrus), and a perennial bunchgrass (Nassella pulchra). By varying the species composition of herbaceous neighborhoods into which acorns were planted, the interactive effects of competition and acorn germplasm source on phenotypic expression could also be examined. Potential maternal effects, expressed as variation in acorn size, were assessed by weighing each acorn before planting. Probability of seedling emergence increased significantly with acorn size in the xeric population but not in the mesic population. Similarly, the effect of acorn size on seedling leaf area, stem weight, and root weight was also population-dependent. At a within-population level, acorn size effects on seedling traits varied significantly among maternal families. In addition to acorn size effects, rates of oak seedling emergence were also dependent on an interaction of population source and competitive environment. Interactions between maternal family and competitive environment in the expression of seedling leaf characters suggest the possibility of genetic variation for plasticity in traits such as specific leaf area. Using carbon isotope discrimination (Δ) as an index of relative water-use efficiency (WUE), higher water use efficiency was indicated for oak seedlings grown in the annual plant neighborhoods compared to seedlings grown in the bunchgrass neighborhood. This trend may represent an adaptive plastic response because, compared to the bunchgrass neighborhood, soil water depletion was more rapid within annual plant neighborhoods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...