Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Neurobiol Dis ; : 106588, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960101

RESUMO

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.

2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612464

RESUMO

Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.


Assuntos
Placenta , Sêmen , Masculino , Feminino , Gravidez , Suínos , Animais , Camundongos , DNA Complementar , Espermatozoides , Eutérios , Alanina , Isoantígenos/genética , Fertilização/genética
3.
Cannabis Cannabinoid Res ; 9(3): 781-796, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358335

RESUMO

Introduction: Studies indicate that ∼7% of pregnant individuals in North America consume cannabis in pregnancy. Pre-clinical studies have established that maternal exposure to Δ9-tetrahydrocannabinol (THC; major psychoactive component in cannabis) leads to fetal growth restriction and impaired cardiac function in offspring. However, the effects of maternal exposure to cannabidiol (CBD; major non-euphoric constituent) on cardiac outcomes in offspring remain unknown. Therefore, our objective is to investigate the functional and underlying molecular impacts in the hearts of offspring exposed to CBD in pregnancy. Methods: Pregnant Wistar rats were exposed to either 3 or 30 mg/kg CBD or vehicle control i.p. daily from gestational day 6 to term. Echocardiography was used to assess cardiac function in male and female offspring at postnatal day (PND) 21. Furthermore, quantitative polymerase chain reaction (qPCR), immunoblotting, and bulk RNA-sequencing (RNA-seq) were performed on PND21 offspring hearts. Results: Despite no differences in the heart-to-body weight ratio, both doses of CBD led to reduced cardiac function exclusively in male offspring at 3 weeks of age. Underlying this, significant alterations in the expression of the endocannabinoid system (ECS; e.g., decreased cannabinoid receptor 2) were observed. In addition, bulk RNA-seq data demonstrated transcriptional pathways significantly enriched in mitochondrial function/metabolism as well as development. Conclusion: Collectively, we demonstrated for the first time that gestational exposure to CBD, a constituent perceived as safe, leads to early sex-specific postnatal cardiac deficits and alterations in the cardiac ECS in offspring.


Assuntos
Canabidiol , Coração , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Animais , Canabidiol/toxicidade , Canabidiol/farmacologia , Feminino , Gravidez , Masculino , Ratos , Coração/efeitos dos fármacos , Exposição Materna/efeitos adversos
4.
Cannabis Cannabinoid Res ; 9(3): 766-780, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38364116

RESUMO

Introduction: Cannabis use is increasing among pregnant people, and cannabidiol (CBD), a constituent of cannabis, is often perceived as "natural" and "safe" as it is non-intoxicating. In utero, cannabis exposure is associated with negative health outcomes, including fetal growth restriction (FGR). The placenta supplies oxygen and nutrients to the fetus, and alterations in placental development can lead to FGR. While there has been some investigation into the effects of Δ9-THC, there has been limited investigation into the impacts of in utero gestational CBD exposure on the placenta. Methods: This study used histological and transcriptomic analysis of embryonic day (E)19.5 rat placentas from vehicle and CBD (3 mg/kg intraperitoneal injection) exposed pregnancies (E6.5-18.5). Results: The study revealed that pups from CBD-exposed pregnancies were 10% smaller, with the placentae displaying a decreased fetal blood space perimeter-to-area ratio. The transcriptomic analysis supported compromised angiogenesis and blood vessel formation with downregulated biological processes, including tube morphogenesis, angiogenesis, blood vessel morphogenesis, blood vessel development and vasculature development. Further, the CBD-exposed placentas displayed changed expression of glucose transporters (decreased GLUT1 and GR expression and increased GLUT3 expression). Transcriptomic analysis further revealed upregulated biological processes associated with metabolism. Finally, histological and transcriptomic analysis revealed altered cell populations within the placenta, specifically to syncytiotrophoblast layer II and endothelial cells. Conclusion: Together these results suggest that the structural changes in CDB-exposed placentae, including the altered expression of nutrient transporters and the changes to the placental fetal vasculature, may underlie the reduced fetal growth.


Assuntos
Canabidiol , Retardo do Crescimento Fetal , Placenta , Gravidez , Animais , Feminino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Canabidiol/farmacologia , Canabidiol/toxicidade , Ratos , Retardo do Crescimento Fetal/induzido quimicamente , Desenvolvimento Fetal/efeitos dos fármacos , Ratos Sprague-Dawley , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo
5.
J Endocrinol ; 260(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855335

RESUMO

Reports in North America suggest that up to 20% of young women (18-24 years) use cannabis during pregnancy. This is concerning given clinical studies indicate that maternal cannabis use is associated with fetal growth restriction and dysglycemia in the offspring. Preclinical studies demonstrated that prenatal exposure to Δ9-tetrahydrocannabinol, the main psychoactive component of cannabis, in rat dams led to female-specific deficits in ß-cell mass and glucose intolerance/insulin resistance. Yet to date, the contributions of cannabidiol (CBD), the primary nonpsychoactive compound in cannabis, remain elusive. This study aimed to define the effects of in utero cannabidiol (CBD) exposure on postnatal glucose regulation. Pregnant Wistar rat dams received daily intraperitoneal injections of either a vehicle solution or 3 mg/kg of CBD from gestational day (GD) 6 to parturition. CBD exposure did not lead to observable changes in maternal or neonatal outcomes; however, by 3 months of age male CBD-exposed offspring exhibited glucose intolerance despite no changes in pancreatic ß/α-cell mass. Transcriptomic analysis on the livers of these CBD-exposed males revealed altered gene expression of circadian rhythm clock machinery, which is linked to systemic glucose intolerance. Furthermore, alterations in hepatic developmental and metabolic processes were also observed, suggesting gestational CBD exposure has a long-lasting detrimental effect on liver health throughout life. Collectively, these results indicate that exposure to CBD alone in pregnancy may be detrimental to the metabolic health of the offspring later in life.


Assuntos
Canabidiol , Intolerância à Glucose , Resistência à Insulina , Células Secretoras de Insulina , Gravidez , Ratos , Feminino , Masculino , Humanos , Animais , Lactente , Canabidiol/toxicidade , Intolerância à Glucose/induzido quimicamente , Ratos Wistar
6.
Mol Psychiatry ; 28(10): 4234-4250, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525013

RESUMO

With increasing maternal cannabis use, there is a need to investigate the lasting impact of prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis, on cognitive/memory function. The endocannabinoid system (ECS), which relies on polyunsaturated fatty acids (PUFAs) to function, plays a crucial role in regulating prefrontal cortical (PFC) and hippocampal network-dependent behaviors essential for cognition and memory. Using a rodent model of prenatal cannabis exposure (PCE), we report that male and female offspring display long-term deficits in various cognitive domains. However, these phenotypes were associated with highly divergent, sex-dependent mechanisms. Electrophysiological recordings revealed hyperactive PFC pyramidal neuron activity in both males and females, but hypoactivity in the ventral hippocampus (vHIPP) in males, and hyperactivity in females. Further, cortical oscillatory activity states of theta, alpha, delta, beta, and gamma bandwidths were strongly sex divergent. Moreover, protein expression analyses at postnatal day (PD)21 and PD120 revealed primarily PD120 disturbances in dopamine D1R/D2 receptors, NMDA receptor 2B, synaptophysin, gephyrin, GAD67, and PPARα selectively in the PFC and vHIPP, in both regions in males, but only the vHIPP in females. Lastly, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we identified region-, age-, and sex-specific deficiencies in specific neural PUFAs, namely docosahexaenoic acid (DHA) and arachidonic acid (ARA), and related metabolites, in the PFC and hippocampus (ventral/dorsal subiculum, and CA1 regions). This study highlights several novel, long-term and sex-specific consequences of PCE on PFC-hippocampal circuit dysfunction and the potential role of specific PUFA signaling abnormalities underlying these pathological outcomes.


Assuntos
Disfunção Cognitiva , Lipidômica , Masculino , Feminino , Gravidez , Humanos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/metabolismo
7.
J Phys Chem B ; 127(15): 3416-3430, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37026896

RESUMO

A refined numerical model for the evaporation and transport of droplets of binary solutions is introduced. Benchmarking is performed against other models found in the literature and experimental measurements of both electrodynamically trapped and freefalling droplets. The model presented represents the microphysical behavior of solutions droplets in the continuum and transition regimes, accounting for the unique hygroscopic behavior of different solutions, including the Fuchs-Sutugin and Cunningham slip correction factors, and accounting for the Kelvin effect. Simulations of pure water evaporation are experimentally validated for temperatures between 290 K and 298 K and between relative humidity values of approximately 0% and 85%. Measurements and simulations of the spatial trajectories and evaporative behavior of aqueous sodium chloride droplets are compared for relative humidity values between 0 and 40%. Simulations are shown to represent experimental data within experimental uncertainty in initial conditions. Calculations of a time-dependent Péclet number, including the temperature dependence of solute diffusion, are related to morphologies of sodium chloride particles dried at different rates. For sodium chloride solutions, dried particles are composed of collections of reproducibly shaped crystals, with higher evaporation rates resulting in higher numbers of crystals, which are smaller.

8.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768233

RESUMO

Correlating gene expression patterns with biomechanical properties of connective tissues provides insights into the molecular processes underlying the tissue growth and repair. Cadaveric specimens such as human knees are widely considered suitable for biomechanical studies, but their usefulness for gene expression experiments is potentially limited by the unavoidable, nuclease-mediated degradation of RNA. Here, we tested whether valid gene expression profiles can be obtained using degraded RNA from human anterior cruciate ligaments (ACLs). Human ACL RNA (N = 6) degraded in vitro by limited ribonuclease digestion resemble highly degraded RNA isolated from cadaveric tissue. PCR threshold cycle (Ct) values for 90 transcripts (84 extracellular matrix, 6 housekeeping) in degraded RNAs variably ranged higher than values obtained from their corresponding non-degraded RNAs, reflecting both the expected loss of target templates in the degraded preparations as well as differences in the extent of degradation. Relative Ct values obtained for mRNAs in degraded preparations strongly correlated with the corresponding levels in non-degraded RNA, both for each ACL as well as for the pooled results from all six ACLs. Nuclease-mediated degradation produced similar, strongly correlated losses of housekeeping and non-housekeeping gene mRNAs. RNA degraded in situ yielded comparable results, confirming that in vitro digestion effectively modeled degradation by endogenous ribonucleases in frozen and thawed ACL. We conclude that, contrary to conventional wisdom, PCR-based expression analyses can yield valid mRNA profiles even from RNA preparations that are more than 90% degraded, such as those obtained from connective tissues subjected to biomechanical studies. Furthermore, legitimate quantitative comparisons between variably degraded tissues can be made by normalizing data to appropriate housekeeping transcripts.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Articulação do Joelho , Transcriptoma , RNA/genética , Cadáver , Fenômenos Biomecânicos
9.
JBRA Assist Reprod ; 27(2): 234-240, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36468799

RESUMO

OBJECTIVE: Despite higher sperm DNA fragmentation may affect intracytoplasmic sperm injection (ICSI) outcomes, sperm selection protocols do not evaluate this parameter. Therefore, sperm's head birefringence has been suggested as an adjuvant of seminal processing to select viable sperm for couples with severe male factor. Considering men with normal seminal parameters may also curse with DNA fragmentation, the aim of this study was to evaluate the impact of sperm selection by birefringence on ICSI outcomes in couples with different infertility factors compared to those submitted to conventional sperm selection. METHODS: In this case-control study, medical records from 181 couples who underwent ICSI from January 2018 to August 2020 (107 from the Conventional and 74 from the Birefringence group) were included in the study. Clinical characteristics and ICSI outcomes were compared between the groups using Student's t test or Chi-square test (p<0.05) and a multivariate logistic regression model was applied regarding clinical pregnancy. RESULTS: Despite the Birefringence group showed higher female age (p=0.01), lower seminal sperm concentration (p<0.01) and higher sperm DNA fragmentation (p<0.01), those patients cursed with both higher cleavage rate (p=0.04), clinical pregnancy rate per transfer (p=0.03) and clinical pregnancy rate per initiated cycle (p=0.02). The logistic regression showed a positive group effect on clinical pregnancy. CONCLUSIONS: The findings suggest a positive clinical impact of this cheap and easily reproducible adjuvant technique on ICSI outcomes in couples with different infertility factors. If confirmed by further methodologically appropriate studies, the sperm's head birefringence could be considered to improve the reproductive chances of those patients.


Assuntos
Infertilidade Masculina , Injeções de Esperma Intracitoplásmicas , Gravidez , Humanos , Masculino , Feminino , Injeções de Esperma Intracitoplásmicas/métodos , Estudos de Casos e Controles , Birrefringência , Sêmen , Espermatozoides , Infertilidade Masculina/terapia , Infertilidade Masculina/genética
10.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171057

RESUMO

Despite increased prevalence of maternal cannabis use, little is understood regarding potential long-term effects of prenatal cannabis exposure (PCE) on neurodevelopmental outcomes. While neurodevelopmental cannabis exposure increases the risk of developing affective/mood disorders in adulthood, the precise neuropathophysiological mechanisms in male and female offspring are largely unknown. Given the interconnectivity of the endocannabinoid (ECb) system and the brain's fatty acid pathways, we hypothesized that prenatal exposure to Δ9-tetrahydrocannabinol (THC) may dysregulate fetal neurodevelopment through alterations of fatty-acid dependent synaptic and neuronal function in the mesolimbic system. To investigate this, pregnant Wistar rats were exposed to vehicle or THC (3 mg/kg) from gestational day (GD)7 until GD22. Anxiety-like, depressive-like, and reward-seeking behavior, electrophysiology, and molecular assays were performed on adult male/female offspring. Imaging of fatty acids using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) was performed at prepubescence and adulthood. We report that PCE induces behavioral, neuronal, and molecular alterations in the mesolimbic system in male and female offspring, resembling neuropsychiatric endophenotypes. Additionally, PCE resulted in profound dysregulation of critical fatty acid pathways in the developing brain lipidome. Female progeny exhibited significant alterations to fatty acid levels at prepubescence but recovered from these deficits by early adulthood. In contrast, males exhibited persistent fatty acid deficits into adulthood. Moreover, both sexes maintained enduring abnormalities in glutamatergic/GABAergic function in the nucleus accumbens (NAc). These findings identify several novel long-term risks of maternal cannabis use and demonstrate for the first time, sex-related effects of maternal cannabinoid exposure directly in the developing neural lipidome.


Assuntos
Canabinoides , Efeitos Tardios da Exposição Pré-Natal , Animais , Agonistas de Receptores de Canabinoides , Dronabinol/toxicidade , Endocanabinoides , Endofenótipos , Ácidos Graxos , Feminino , Humanos , Masculino , Gravidez , Ratos , Ratos Wistar , Transdução de Sinais
11.
Viruses ; 14(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36146663

RESUMO

Respiratory pathogens can be spread though the transmission of aerosolised expiratory secretions in the form of droplets or particulates. Understanding the fundamental aerosol parameters that govern how such pathogens survive whilst airborne is essential to understanding and developing methods of restricting their dissemination. Pathogen viability measurements made using Controlled Electrodynamic Levitation and Extraction of Bioaerosol onto Substrate (CELEBS) in tandem with a comparative kinetics electrodynamic balance (CKEDB) measurements allow for a direct comparison between viral viability and evaporation kinetics of the aerosol with a time resolution of seconds. Here, we report the airborne survival of mouse hepatitis virus (MHV) and determine a comparable loss of infectivity in the aerosol phase to our previous observations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the addition of clinically relevant concentrations of mucin to the bioaerosol, there is a transient mitigation of the loss of viral infectivity at 40% RH. Increased concentrations of mucin promoted heterogenous phase change during aerosol evaporation, characterised as the formation of inclusions within the host droplet. This research demonstrates the role of mucus in the aerosol phase and its influence on short-term airborne viral stability.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Viabilidade Microbiana , Mucinas , Aerossóis e Gotículas Respiratórios
12.
Can J Diabetes ; 46(8): 851-862, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35985923

RESUMO

OBJECTIVES: Administration of Δ9-tetrahydrocannabinol (Δ9-THC) to pregnant rats results in glucose intolerance, insulin resistance and reduced islet mass in female, but not male, offspring. The effects of Δ9-THC on other islet hormones is not known. One downstream target of the cannabinoid receptor, stathmin-2 (Stmn2), has recently been shown to suppress glucagon secretion, thereby suggesting Δ9-THC may also affect alpha-cell function. The aim of the present study was to determine the effects of in-utero Δ9-THC exposure on the profile of glucagon, insulin and Stmn2 in the rat offspring islet and serum. METHODS: Pregnant Wistar rat dams were injected with Δ9-THC (3 mg/kg per day, intraperitoneally) or vehicle from gestational day 6 to birth. Offspring were euthanized at postnatal day 21 (PND21) or at 5 months (adult) to collect blood and pancreata. RESULTS: At PND21, control and Δ9-THC-exposed offspring showed that Stmn2 had a strong colocalization with glucagon (Pearson's correlation coefficient ≥0.6), and a weak colocalization with insulin (Pearson's correlation coefficient <0.4) in both males and females, with no changes by either treatment or sex. In adult female offspring in the Δ9-THC group, intensity analysis indicated an increased insulin-to-glucagon (I/G; p<0.05) ratio and a decreased glucagon-to-Stmn2 (G/S; p<0.01) ratio, and no changes in these ratios in adult males. Furthermore, Δ9-THC did not alter fasting blood glucose and serum insulin levels in either male or female adult offspring. However, female Δ9-THC-exposed offspring exhibited an increased I/G ratio (p<0.05) and decreased G/S ratio in serum by adulthood (p<0.05). CONCLUSION: Collectively, the reduced G/S ratio in both islet and serum in association with an increased serum I/G ratio has direct correlations with early glucose intolerance and insulin resistance observed exclusively in females' offspring in this prenatal cannabinoid model.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Ratos , Dronabinol/efeitos adversos , Glucagon , Insulina , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Wistar , Estatmina
13.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887347

RESUMO

As cannabis use during pregnancy increases, it is important to understand its effects on the developing fetus. Particularly, the long-term effects of its psychoactive component, delta-9-tetrahydrocannabinol (THC), on the offspring's reproductive health are not fully understood. This study examined the impact of gestational THC exposure on the miRNA profile in adult rat ovaries and the possible consequences on ovarian health. Prenatal THC exposure resulted in the differential expression of 12 out of 420 evaluated miRNAs. From the differentially expressed miRNAs, miR-122-5p, which is highly conserved among species, was the only upregulated target and had the greatest fold change. The upregulation of miR-122-5p and the downregulation of its target insulin-like growth factor 1 receptor (Igf1r) were confirmed by RT-qPCR. Prenatally THC-exposed ovaries had decreased IGF-1R-positive follicular cells and increased follicular apoptosis. Furthermore, THC decreased Igf1r expression in ovarian explants and granulosa cells after 48 h. As decreased IGF-1R has been associated with diminished ovarian health and fertility, we propose that these THC-induced changes may partially explain the altered ovarian follicle dynamics observed in THC-exposed offspring. Taken together, our data suggests that prenatal THC exposure may impact key pathways in the developing ovary, which could lead to subfertility or premature reproductive senescence.


Assuntos
Alucinógenos , MicroRNAs , Efeitos Tardios da Exposição Pré-Natal , Animais , Dronabinol/farmacologia , Feminino , Humanos , MicroRNAs/genética , Ovário , Gravidez , Ratos , Receptor IGF Tipo 1/genética
14.
Genome Biol ; 23(1): 155, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821049

RESUMO

BACKGROUND: Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS: Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS: Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.


Assuntos
Placenta , Sêmen , Animais , Eutérios , Feminino , Masculino , Filogenia , Gravidez , Espermatozoides/metabolismo
15.
Front Immunol ; 13: 809247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693780

RESUMO

Continuous exposure of tissue antigen (Ag) to the autoantigen-specific regulatory T cells (Treg) is required to maintain Treg-dependent systemic tolerance. Thus, testis autoantigens, previously considered as sequestered, may not be protected by systemic tolerance. We now document that the complete testis antigen sequestration is not valid. The haploid sperm Ag lactate dehydrogenase 3 (LDH3) is continuously exposed and not sequestered. It enters the residual body (RB) to egress from the seminiferous tubules and interact with circulating antibody (Ab). Some LDH3 also remains inside the sperm cytoplasmic droplets (CD). Treg-depletion in the DEREG mice that express diphtheria toxin receptor on the Foxp3 promoter results in spontaneous experimental autoimmune orchitis (EAO) and Ab to LDH3. Unlike the wild-type male mice, mice deficient in LDH3 (wild-type female or LDH3 NULL males) respond vigorously to LDH3 immunization. However, partial Treg depletion elevated the wild-type male LDH3 responses to the level of normal females. In contrast to LDH3, zonadhesin (ZAN) in the sperm acrosome displays properties of a sequestered Ag. However, when ZAN and other sperm Ag are exposed by vasectomy, they rapidly induce testis Ag-specific tolerance, which is terminated by partial Treg-depletion, leading to bilateral EAO and ZAN Ab response. We conclude that some testis/sperm Ag are normally exposed because of the unique testicular anatomy and physiology. The exposed Ag: 1) maintain normal Treg-dependent systemic tolerance, and 2) are pathogenic and serve as target Ag to initiate EAO. Unexpectedly, the sequestered Ags, normally non-tolerogenic, can orchestrate de novo Treg-dependent, systemic tolerance when exposed in vasectomy.


Assuntos
Orquite , Vasectomia , Animais , Autoantígenos , Feminino , Humanos , Tolerância Imunológica , Masculino , Camundongos , Linfócitos T Reguladores
16.
Proc Natl Acad Sci U S A ; 119(27): e2200109119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763573

RESUMO

Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to ∼10% of the starting value was observable for SARS-CoV-2 over 20 min, with a large proportion of the loss occurring within the first 5 min after aerosolization. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallize at relative humidities (RHs) below 50%, leading to a near-instant loss of infectivity in 50 to 60% of the virus. However, at 90% RH, the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 min, beyond which it decays to only 10% remaining infectious after 10 min. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilization of CO2 from bicarbonate buffer within the droplet. Four different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH.


Assuntos
Partículas e Gotas Aerossolizadas , COVID-19 , SARS-CoV-2 , Partículas e Gotas Aerossolizadas/química , Partículas e Gotas Aerossolizadas/isolamento & purificação , COVID-19/transmissão , Humanos , Umidade , Concentração de Íons de Hidrogênio , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
17.
Reprod Toxicol ; 111: 59-67, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588954

RESUMO

While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, have been studied extensively in the central nervous system, there is limited knowledge about its effects on the female reproductive system. The aim of this study was to assess the effect of THC on the expression and secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the ovary, and to determine if these effects were mediated by prostaglandins. Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 24 h. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known regulator of VEGF production, were determined in the media. To evaluate the role of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in VEGF and PGE2 secretion, along with an increase in proliferation and cell survival when challenged with an apoptosis-inducing factor. Pre-treatment with COX inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. Alterations in granulosa cell function, such as the ones observed after THC exposure, may impact essential ovarian processes including folliculogenesis and ovulation, which could in turn affect female reproductive health and fertility. With the ongoing increase in cannabis use and potency, further study on the impact of cannabis and its constituents on female reproductive health is required.


Assuntos
Cannabis , Fator A de Crescimento do Endotélio Vascular , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dronabinol/toxicidade , Feminino , Células da Granulosa/metabolismo , Prostaglandinas E , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
18.
Pediatr Res ; 91(5): 1078-1089, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34230622

RESUMO

BACKGROUND: Intrauterine growth restriction and low birth weight (LBW) have been widely reported as an independent risk factor for adult hypercholesterolaemia and increased hepatic cholesterol in a sex-specific manner. However, the specific impact of uteroplacental insufficiency (UPI), a leading cause of LBW in developed world, on hepatic cholesterol metabolism in later life, is ill defined and is clinically relevant in understanding later life liver metabolic health trajectories. METHODS: Hepatic cholesterol, transcriptome, cholesterol homoeostasis regulatory proteins, and antioxidant markers were studied in UPI-induced LBW and normal birth weight (NBW) male and female guinea pigs at 150 days. RESULTS: Hepatic free and total cholesterol were increased in LBW versus NBW males. Transcriptome analysis of LBW versus NBW livers revealed that "cholesterol metabolism" was an enriched pathway in LBW males but not in females. Microsomal triglyceride transfer protein and cytochrome P450 7A1 protein, involved in hepatic cholesterol efflux and catabolism, respectively, and catalase activity were decreased in LBW male livers. Superoxide dismutase activity was reduced in LBW males but increased in LBW females. CONCLUSIONS: UPI environment is associated with a later life programed hepatic cholesterol accumulation via impaired cholesterol elimination in a sex-specific manner. These programmed alterations could underlie later life cholesterol-induced hepatic lipotoxicity in LBW male offspring. IMPACT: Low birth weight (LBW) is a risk factor for increased hepatic cholesterol. Uteroplacental insufficiency (UPI) resulting in LBW increased hepatic cholesterol content, altered hepatic expression of cholesterol metabolism-related genes in young adult guinea pigs. UPI-induced LBW was also associated with markers of a compromised hepatic cholesterol elimination process and failing antioxidant system in young adult guinea pigs. These changes, at the current age studied, were sex-specific, only being observed in LBW males and not in LBW females. These programmed alterations could lead to further hepatic damage and greater predisposition to liver diseases in UPI-induced LBW male offspring as they age.


Assuntos
Antioxidantes , Hepatopatias , Animais , Peso ao Nascer , Colesterol , Sistema Enzimático do Citocromo P-450 , Feminino , Cobaias , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Masculino
19.
J Dev Orig Health Dis ; 13(2): 156-160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34047687

RESUMO

Prenatal exposure to nicotine, tobacco's major addictive constituent, has been shown to reduce birth weight and increases apoptosis, oxidative stress, and mitochondrial dysfunction in the postnatal pancreas. Given that upregulated levels of the pro-oxidative adapter protein p66shc is observed in growth-restricted offspring and is linked to beta-cell apoptosis, the goal of this study was to investigate whether alterations in p66shc expression underlie the pancreatic deficits in nicotine-exposed offspring. Maternal administration of nicotine in rats increased p66shc expression in the neonatal pancreas. Similarly, nicotine treatment augmented p66shc expression in INS-1E pancreatic beta cells. Increased p66shc expression was also associated with decreased histone H3 lysine 9 methylation. Finally, nicotine increased the expression of Kdm4c, a key histone lysine demethylase, and decreased Suv39h1, a critical histone lysine methyltransferase. Collectively, these results suggest that upregulation of p66shc through posttranslational histone modifications may underlie the reported adverse outcomes of nicotine exposure on pancreatic function.


Assuntos
Histonas , Nicotina , Animais , Feminino , Lisina/metabolismo , Metilação , Nicotina/toxicidade , Pâncreas , Gravidez , Ratos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
20.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502436

RESUMO

Up to 20% of pregnant women ages 18-24 consume cannabis during pregnancy. Moreover, clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction (FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular disease in the offspring. This is of great concern considering that the concentration of Δ9- tetrahydrocannabinol (Δ9-THC), a major psychoactive component of cannabis, has doubled over the last decade and can readily cross the placenta and enter fetal circulation, with the potential to negatively impact fetal development via the endocannabinoid (eCB) system. Cannabis exposure in utero could also lead to FGR via placental insufficiency. In this review, we aim to examine current pre-clinical and clinical findings on the direct effects of exposure to cannabis and its constituents on fetal development as well as indirect effects, namely placental insufficiency, on postnatal metabolic diseases.


Assuntos
Agonistas de Receptores de Canabinoides/efeitos adversos , Dronabinol/efeitos adversos , Retardo do Crescimento Fetal/induzido quimicamente , Placenta/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Doenças Metabólicas/induzido quimicamente , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...