Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JDS Commun ; 4(4): 313-317, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521057

RESUMO

Since insulin has been demonstrated to suppress IgG absorption in other neonatal species, we had the objective to delineate how colostral insulin concentrations affect IgG absorption in neonatal bovines. We enrolled Holstein bull calves (n = 48; body weight = 46.3 ± 0.84 kg) at birth and randomized them by birth order to receive (1) colostrum that contained basal insulin concentrations (12.9 µg/L; n = 16), or colostrum that had been supplemented with an exogenous insulin to increase the insulin concentration to either (2) 5 times (70.0 µg/L; n = 16) or (3) 10 times (149.7 µg/L; n = 16) that of the basal colostrum. Gross colostrum composition (crude fat: 4.1 ± 0.06%; crude protein: 11.7 ± 0.05%; lactose: 1.9 ± 0.01%; IgG: 63.9 ± 1.19 g/L) was similar between treatments and calves were fed (7% body weight, 3.1 ± 0.06 L) their treatments at 2, 14, and 26 h postnatal. Serum was collected at 0, 30, 60, 90, 120, 180, 240, 360, 480, and 600 min postprandial respective to the first and second colostrum feeding and analyzed for IgG concentration. The incremental area under the curve (I-AUC) and apparent efficiency of absorption (AEA) were calculated for the 10-h periods following the first and second colostrum meal. Serum IgG concentrations over time, I-AUC, and AEA were statistically analyzed as a complete randomized design. Colostrum insulin concentration did not affect serum IgG concentrations or the I-AUC or AEA after calves were fed colostrum at 2 and 14 h postnatal. High colostral insulin content is not detrimental or promotive to IgG absorption in neonatal Holstein bulls.

2.
J Dairy Sci ; 106(7): 5054-5073, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268570

RESUMO

The objectives of this study were to evaluate how varying colostral insulin concentrations influenced small intestinal development and peripheral metabolism in neonatal Holstein bulls. Insulin was supplemented to approximately 5× (70.0 µg/L; n = 16) or 10× (149.7 µg/L; n = 16) the basal colostrum insulin (12.9 µg/L; BI, n = 16) concentration to maintain equivalent macronutrient intake (crude fat: 4.1 ± 0.06%; crude protein: 11.7 ± 0.05%; and lactose: 1.9 ± 0.01%) among treatments. Colostrum was fed at 2, 14, and 26 h postnatal and blood metabolites and insulin concentration were measured at 0, 30, 60, 90, 120, 180, 240, 360, 480, and 600 min postprandial respective to the first and second colostrum meal. At 30 h postnatal, a subset of calves (n = 8/treatment) were killed to excise the gastrointestinal and visceral tissues. Gastrointestinal and visceral gross morphology and dry matter and small intestinal histomorphology, gene expression, and carbohydrase activity were assessed. Insulin supplementation tended to linearly reduce the glucose clearance rate following the first meal, whereas after the second meal, supplementation linearly increased the rate of glucose absorption and nonesterified fatty acid clearance rate, decreased the time to maximum glucose concentrations, and decreased the time to reach minimum nonesterified fatty acid concentrations. Additionally, insulin clearance rate was linearly increased by insulin supplementation following the second colostrum feeding. However, there were no overall differences between treatments in the concentrations of glucose, nonesterified fatty acids, or insulin in plasma or serum. With respect to macroscopic intestinal development, dry rumen tissue mass linearly decreased when insulin was supplemented in colostrum, and supplementation linearly increased duodenal dry tissue density (g dry matter/cm) while tending to increase duodenal dry tissue weight. Increasing the colostrum insulin concentration improved small intestinal histomorphological development in the distal small intestine, as ileal villi height and mucosal-serosal surface area index were increased by supplementing insulin. Lactase enzymatic activity linearly increased in the proximal jejunum while ileal isomaltase activity linearly decreased with insulin supplementation. These data indicate that changes in colostrum insulin concentrations rapidly affect gastrointestinal growth prioritization and carbohydrase activity. The changes in gastrointestinal ontology result in minor changes in postprandial metabolite availability and clearance.


Assuntos
Colostro , Insulina , Gravidez , Feminino , Animais , Bovinos , Masculino , Colostro/metabolismo , Insulina/metabolismo , Dieta/veterinária , Animais Recém-Nascidos , Intestino Delgado/metabolismo , Suplementos Nutricionais , Glucose/metabolismo , Ácidos Graxos não Esterificados/metabolismo , RNA Mensageiro/metabolismo
3.
JDS Commun ; 3(4): 301-306, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36338016

RESUMO

The objective of this cross-sectional, diagnostic accuracy study was to validate a human blood glucose meter (Contour Next One Meter, Ascensia Diabetes Care) for accuracy and precision when measuring blood glucose, and for diagnostic accuracy for hypoglycemic status in dairy calves using whole blood and blood plasma. A total of 49 male dairy calves [body weight (BW): 46.3 ± 0.8 kg] had jugular catheters placed within 75 min after birth. Thereafter, blood was withdrawn from the catheter at specific time points (-10, 10, 20, 30, 45, 60, 90, 120, 180, 240, 360, 480, and 600 min) relative to the first and second colostrum feedings (2 h 15 min and 14 h 5 min postnatal; feeding rate: 7% of BW wt/wt). The reference standard method for plasma glucose concentration was determined colorimetrically and in duplicate using the glucose oxidase-peroxidase reaction. Data were assessed for agreement between the glucose meter and the reference standard using Lin's concordance correlation coefficients (CCC), coefficients of determination (precision), and Bland-Altman plots. In addition, a mixed linear regression model was built using the reference method as the outcome, with the glucose meter and repeated measures of time as the explanatory variables and calf as a random effect. The sensitivity (Se), specificity (Sp), and area under the curve (AUC) for the glucose meter using calf whole-blood and plasma were calculated at a threshold of <4.44 mmol/L to determine hypoglycemia. The precision (CCC = 0.95, R2 = 0.93) and accuracy (AUC = 0.98) of the glucose meter were very high when used on 1,303 blood plasma samples. Youden's index revealed a threshold of <4.45 mmol/L for the glucose meter when used with plasma, leading to Se of 94.2% and Sp of 91.9%, with 92.5% of samples being correctly classified, suggesting high diagnostic accuracy. When using whole blood, precision (CCC = 0.85 and R2 = 0.73) and accuracy (AUC = 0.92) were high when used on 476 samples. Youden's index revealed a threshold of <4.95 mmol/L for the glucose meter when used with whole calf blood, leading to Se of 95.6% and Sp of 80.3%, with 84.7% of samples being correctly classified, suggesting high diagnostic accuracy for use on farm. In summary, this glucose meter was validated for measuring calf blood glucose using both plasma and whole blood. This meter can measure glycemic status in calves and may be useful for clinical and on-farm use to make intervention decisions.

4.
J Dairy Sci ; 105(5): 4692-4710, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35473965

RESUMO

The specific fatty acid (FA) profile of colostrum may indicate a biological requirement for neonatal calves. The objective of this study was to characterize the FA profile and yields in colostrum, transition milk, and mature milk in primiparous (PP) and multiparous (MP) cows. Colostrum was milked from 10 PP and 10 MP Holstein cows fed the same pre- and postpartum rations. Milkings (M) 2 to 5 and 12 were respectively termed transition and mature milk. Overall, short-chain FA (C4:0 and C6:0) were 61 and 50% lower in colostrum than mature milk, respectively. A parity by milking interaction was also present, with higher C4:0 for PP cows at M2 and for MP cows at M12. Additionally, higher concentrations of C6:0 were present for PP cows at M2 through M4 and for MP cows at M12. Palmitic (C16:0) and myristic (C14:0) acids were 38% and 19% higher in colostrum than mature milk, respectively. However, total saturated FA remained relatively stable. Branched-chain FA were 13% lower in colostrum than mature milk and higher in PP than MP cows throughout the milking period. The proportion of trans-monounsaturated FA (MUFA) was 72% higher in PP cows throughout the milking period, as well as 13% lower in colostrum than mature milk. In contrast, cis-MUFA and total MUFA were not affected by milking nor parity. Linoleic acid (LA) was 25% higher in colostrum than transition and mature milks, but α-linolenic acid (ALA) did not differ. Consequently, the ratio of LA to ALA was 29% higher in colostrum than mature milk and 33% higher in MP cows. Linoleic acid was also 15% higher in MP cows, whereas ALA was 15% higher in PP cows. Conjugated linoleic acid (CLA, cis-9,trans-11) was 2.7-fold higher in PP cows, and no differences between colostrum and mature milk were detected. Overall, polyunsaturated FA (PUFA) from the n-6 and n-3 series were over 40% higher in colostrum compared with transition and mature milk. Milking by parity interactions were present for arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 PUFA, translating to higher proportions in PP cows in M1 to M3, whereas proportions remained relatively stable throughout the milking period in MP cows. Despite increasing milk yields throughout the subsequent milkings, higher yields of EPA, ARA, DPA, and DHA were present in colostrum than in mature milk. Greater proportions and yields of n-3 and n-6 FA in colostrum may translate to specific requirements for newborn calves. Differences were also observed between PP and MP cows and may reflect different nutrient requirements and partitioning.


Assuntos
Colostro , Leite , Animais , Bovinos , Ácidos Docosa-Hexaenoicos , Ácidos Graxos , Feminino , Lactação , Paridade , Gravidez
5.
J Dairy Sci ; 105(3): 2612-2630, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033345

RESUMO

The specific fatty acid (FA) profile of colostrum may indicate a biological requirement for neonatal calves. The objective of this study was to characterize the FA profile and yields in colostrum, transition milk, and mature milk in primiparous (PP) and multiparous (MP) cows. Colostrum was milked from 10 PP and 10 MP Holstein cows fed the same pre- and postpartum rations. Milkings (M) 2 to 5 and 12 were respectively termed transition and mature milk. Overall, short-chain FA (C4:0 and C6:0) were 61 and 50% lower in colostrum than mature milk, respectively. A parity by milking interaction was also present, with higher C4:0 for PP cows at M2 and for MP cows at M12. Additionally, higher concentrations of C6:0 were present for PP cows at M2 through M4 and for MP cows at M12. Palmitic (C16:0) and myristic (C14:0) acids were 16% and 27% higher in colostrum than mature milk, respectively. However, total saturated FA remained relatively stable. Branched-chain FA were 13% lower in colostrum than mature milk and higher in PP than MP cows throughout the milking period. The proportion of trans-monounsaturated FA (MUFA) was 42% higher in PP cows throughout the milking period, as well as 15% lower in colostrum than mature milk. In contrast, cis-MUFA and total MUFA were not affected by milking nor parity. Linoleic acid (LA) was 13% higher in colostrum than transition and mature milks, but α-linolenic acid (ALA) did not differ. Consequently, the ratio of LA to ALA was 23% higher in colostrum than mature milk and 25% higher in MP cows. Linoleic acid was also 13% higher in MP cows, whereas ALA was 15% higher in PP cows. Conjugated linoleic acid (CLA, cis-9,trans-11) was 63% higher in PP cows, and no differences between colostrum and mature milk were detected. Overall, polyunsaturated FA (PUFA) from the n-6 and n-3 series were over 25% higher in colostrum compared with transition and mature milk. Milking by parity interactions were present for arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 PUFA, translating to higher proportions in PP cows in M1 to M3, whereas proportions remained relatively stable throughout the milking period in MP cows. Despite increasing milk yields throughout the subsequent milkings, higher yields of EPA, ARA, DPA, and DHA were present in colostrum than in mature milk. Greater proportions and yields of n-3 and n-6 FA in colostrum may translate to specific requirements for newborn calves. Differences were also observed between PP and MP cows and may reflect different nutrient requirements and partitioning.


Assuntos
Colostro , Leite , Animais , Bovinos , Dieta/veterinária , Ácidos Graxos , Feminino , Lactação , Paridade , Gravidez
6.
J Dairy Sci ; 104(8): 8341-8362, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34053756

RESUMO

Dairy calf nutrition is traditionally one of the most overlooked aspects of dairy management, despite its large effect on the efficiency and profitability of dairy operations. Unfortunately, among all animals on the dairy farm, calves suffer from the highest rates of morbidity and mortality. These challenges have catalyzed calf nutrition research over the past decade to mitigate high incidences of disease and death, and improve animal health, growth, welfare, and industry sustainability. However, major knowledge gaps remain in several crucial stages of development. The purpose of this review is to summarize the key concepts of nutritional physiology and programming from conception to puberty and their subsequent effects on development of the calf, and ultimately, future performance. During fetal development, developmental plasticity is highest. At this time, maternal energy and protein consumption can influence fetal development, likely playing a critical role in calf and heifer development and, importantly, future production. After birth, the calf's first meal of colostrum is crucial for the transfer of immunoglobulin to support calf health and survival. However, colostrum also contains numerous bioactive proteins, lipids, and carbohydrates that may play key roles in calf growth and health. Extending the delivery of these bioactive compounds to the calf through a gradual transition from colostrum to milk (i.e., extended colostrum or transition milk feeding) may confer benefits in the first days and weeks of life to prepare the calf for the preweaning period. Similarly, optimal nutrition during the preweaning period is vital. Preweaning calves are highly susceptible to health challenges, and improved calf growth and health can positively influence future milk production. Throughout the world, the majority of dairy calves rely on milk replacer to supply adequate nutrition. Recent research has started to re-evaluate traditional formulations of milk replacers, which can differ significantly in composition compared with whole milk. Transitioning from a milk-based diet to solid feed is critical in the development of mature ruminants. Delaying weaning age and providing long and gradual step-down protocols have become common to avoid production and health challenges. Yet, determining how to appropriately balance the amount of energy and protein supplied in both liquid and solid feeds based on preweaning milk allowances, and further acknowledging their interactions, shows great promise in improving growth and health during weaning. After weaning and during the onset of puberty, heifers are traditionally offered high-forage diets. However, recent work suggests that an early switch to a high-forage diet will depress intake and development during the time when solid feed efficiency is greatest. It has become increasingly clear that there are great opportunities to advance our knowledge of calf nutrition; yet, a more concentrated and rigorous approach to research that encompasses the long-term consequences of nutritional regimens at each stage of life is required to ensure the sustainability and efficiency of the global dairy industry.


Assuntos
Ração Animal , Distinções e Prêmios , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Leite , Maturidade Sexual , Desmame
7.
J Dairy Sci ; 103(12): 11833-11843, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33069413

RESUMO

Conflicting reports exist on whether prolonged IgG consumption can further increase serum IgG in neonatal calves. Given that higher serum IgG in neonates has lifelong benefits, our objective was to determine whether serum IgG can be increased by providing multiple meals containing IgG to neonatal calves. Twenty-seven Holstein bulls were all fed 1 colostrum meal (7.5% body weight; 62 g of IgG/L) at 2 h after birth and randomly assigned to be fed (5% body weight) colostrum (COL; n = 9), whole milk (WM; n = 9), or a 1:1 colostrum:whole milk mixture (MX; n = 9) every 12 h from 12 to 72 h. Serum IgG was measured at 1, 2, 3, 6, 9, 11, and 12 h after birth. After the 12-h meal, IgG was determined at 0.5-h intervals until 16 h and then at 1-h intervals from 16 to 24 h. Serum IgG was then measured at 27 h, then every 6 h from 30 to 60 h. From 60 to 64 h, IgG was measured every 0.5 h, then at 65 and 66 h, and then every 2 h until 72 h. Serum IgG increased rapidly between 2 and 12 h for all calves. A treatment × time interaction occurred as serum IgG began to diverge between treatments after they were fed at 12 h; the interaction was greatest over the entire period for COL compared with both MX and WM and was greater for MX than for WM. Maximum IgG concentrations (Cmax) were 30.4 ± 0.8, 27.2 ± 0.8, and 23.9 ± 0.8 g/L for COL, MX, and WM, respectively. Although MX Cmax was equivalent to both COL and WM Cmax, COL Cmax was greater than WM Cmax. Feeding COL and MX also prolonged the time to reach Cmax. Respectively, these calves achieved Cmax at 29.5 and 27.0 ± 3.4 h, whereas WM IgG peaked at 13.4 ± 3.4 h. No differences were observed for apparent efficiency of absorption between treatments from 0 to 12 h and 0 to 24 h. Immunoglobulin G area under the curve (AUC) was the same for COL and MX calves over the entire experimental period and from when treatments were fed. The IgG AUC for 0 to 72 h for WM calves was 27.4% lesser than that for COL calves but not different from MX calves. However, the IgG AUC for 12 to 72 h for WM calves differed relative to that for both COL (30.8% less) and MX (19.6% less) calves. Serum IgG concentrations were more persistent when COL (88.2 ± 2.4%) and MX (91.2 ± 2.4%) were fed rather than WM (75.3 ± 2.4%). Prolonged IgG consumption increased serum IgG concentrations, corresponding to the mass of IgG fed, and improved apparent IgG persistency in Holstein bulls. Neonatal calves should be fed at least 62 g of IgG at 12 h after birth to further increase serum IgG concentrations.


Assuntos
Bovinos/imunologia , Colostro/imunologia , Imunoglobulina G/sangue , Leite/imunologia , Animais , Animais Recém-Nascidos , Peso Corporal , Bovinos/sangue , Feminino , Imunidade Materno-Adquirida , Masculino , Parto , Gravidez
8.
J Dairy Sci ; 102(3): 2618-2630, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30612800

RESUMO

The objective of this study was to analyze the mammary gland transcriptome to determine how preweaning nutrient supply alters the molecular mechanisms that regulate preweaning mammary development. Holstein heifers were fed via milk replacer (MR) either an elevated level of nutrient intake (ELE; on average, 5.9 ± 0.2 Mcal of ME in 8.4 L of MR/d, n = 6) or a restricted amount of nutrients (RES; 2.8 ± 0.2 Mcal of ME in 4 L of MR/d, n = 5) for 54 d after birth, at which point they were slaughtered and samples of mammary parenchyma tissue were obtained. Parenchymal mRNA was analyzed, and the fold change (FC) of 18,111 genes (ELE relative to RES) was uploaded to Ingenuity Pathway Analysis (IPA) software (Qiagen Bioinformatics, Redwood City, CA) for transcriptomic analysis. Using a threshold of P < 0.05, IPA identified that the FC of 1,931 of 18,811 differentially expressed genes (DEG) could be used for the analysis. A total of 18 molecular and cellular functions were relevant to DEG arising from the treatments; the 5 functions most associated with DEG were cell death and survival, cellular movement, cellular development, cellular growth and proliferation, and lipid metabolism. Based on the directional FC of DEG, the mammary gland of ELE heifers was predicted to have increased epithelial-mesenchymal transition (Z = 2.685) and accumulation of lipid (Z = 2.322), whereas the synthesis of DNA (Z = -2.137), transactivation of RNA (Z = -2.254), expression of RNA (Z = -2.405), transcription (Z = -2.482), and transactivation (Z = -2.611) were all predicted to be decreased. Additionally, IPA predicted the activation status of 13 upstream regulators with direct influence on DEG as affected by ELE feeding that were ligand-dependent nuclear receptors (n = 2), enzymes (n = 1), or transcription regulators (n = 10). Of these, 6 were activated (Z > 2) and 7 were inhibited (Z < -2). In summary, feeding ELE preweaning altered the mammary transcriptome of Holstein heifers, affecting cell functions involved in the morphological and physiological development of the mammary gland.


Assuntos
Bovinos/metabolismo , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/fisiologia , Glândulas Mamárias Animais/metabolismo , Nutrientes/administração & dosagem , Desmame , Ração Animal/análise , Animais , Proliferação de Células , DNA/biossíntese , Dieta/veterinária , Ingestão de Energia , Feminino , Metabolismo dos Lipídeos/fisiologia , Leite , RNA/genética , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...