Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0290158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910557

RESUMO

Videogames are emerging as a promising experimental paradigm in neuroimaging. Acquiring gameplay in a scanner remains challenging due to the lack of a scanner-compatible videogame controller that provides a similar experience to standard, commercial devices. In this paper, we introduce a videogame controller designed for use in the functional magnetic resonance imaging as well as magnetoencephalography. The controller is made exclusively of 3D-printed and commercially available parts. We evaluated the quality of our controller by comparing it to a non-MRI compatible controller that was kept outside the scanner. The comparison of response latencies showed reliable button press accuracies of adequate precision. Comparison of the subjects' motion during fMRI recordings of various tasks showed that the use of our controller did not increase the amount of motion produced compared to a regular MR compatible button press box. Motion levels during an ecological videogame task were of moderate amplitude. In addition, we found that the controller only had marginal effect on temporal SNR in fMRI, as well as on covariance between sensors in MEG, as expected due to the use of non-magnetic building materials. Finally, the reproducibility of the controller was demonstrated by having team members who were not involved in the design build a reproduction using only the documentation. This new videogame controller opens new avenues for ecological tasks in fMRI, including challenging videogames and more generally tasks with complex responses. The detailed controller documentation and build instructions are released under an Open Source Hardware license to increase accessibility, and reproducibility and enable the neuroimaging research community to improve or modify the controller for future experiments.


Assuntos
Magnetoencefalografia , Jogos de Vídeo , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Neuroimagem
2.
Sci Rep ; 13(1): 15811, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737222

RESUMO

Self-induced cognitive trance (SICT) is a voluntary non-ordinary state of consciousness characterized by a lucid yet narrowed awareness of the external surroundings. It involves a hyper-focused immersive experience of flow, expanded inner imagery, modified somatosensory processing, and an altered perception of self and time. SICT is gaining attention due to its potential clinical applications. Similar states of non-ordinary state of consciousness, such as meditation, hypnosis, and psychedelic experiences, have been reported to induce changes in the autonomic nervous system. However, the functioning of the autonomic nervous system during SICT remains poorly understood. In this study, we aimed to investigate the impact of SICT on the cardiac and respiratory signals of 25 participants proficient in SICT. To accomplish this, we measured various metrics of heart rate variability (HRV) and respiration rate variability (RRV) in three conditions: resting state, SICT, and a mental imagery task. Subsequently, we employed a machine learning framework utilizing a linear discriminant analysis classifier and a cross-validation scheme to identify the features that exhibited the best discrimination between these three conditions. The results revealed that during SICT, participants experienced an increased heart rate and a decreased level of high-frequency (HF) HRV compared to the control conditions. Additionally, specific increases in respiratory amplitude, phase ratio, and RRV were observed during SICT in comparison to the other conditions. These findings suggest that SICT is associated with a reduction in parasympathetic activity, indicative of a hyperarousal state of the autonomic nervous system during SICT.


Assuntos
Estado de Consciência , Alucinógenos , Humanos , Sistema Nervoso Autônomo , Benchmarking , Análise Discriminante
3.
Neuroimage ; 277: 120253, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385392

RESUMO

Machine learning (ML) is increasingly used in cognitive, computational and clinical neuroscience. The reliable and efficient application of ML requires a sound understanding of its subtleties and limitations. Training ML models on datasets with imbalanced classes is a particularly common problem, and it can have severe consequences if not adequately addressed. With the neuroscience ML user in mind, this paper provides a didactic assessment of the class imbalance problem and illustrates its impact through systematic manipulation of data imbalance ratios in (i) simulated data and (ii) brain data recorded with electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Our results illustrate how the widely-used Accuracy (Acc) metric, which measures the overall proportion of successful predictions, yields misleadingly high performances, as class imbalance increases. Because Acc weights the per-class ratios of correct predictions proportionally to class size, it largely disregards the performance on the minority class. A binary classification model that learns to systematically vote for the majority class will yield an artificially high decoding accuracy that directly reflects the imbalance between the two classes, rather than any genuine generalizable ability to discriminate between them. We show that other evaluation metrics such as the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC), and the less common Balanced Accuracy (BAcc) metric - defined as the arithmetic mean between sensitivity and specificity, provide more reliable performance evaluations for imbalanced data. Our findings also highlight the robustness of Random Forest (RF), and the benefits of using stratified cross-validation and hyperprameter optimization to tackle data imbalance. Critically, for neuroscience ML applications that seek to minimize overall classification error, we recommend the routine use of BAcc, which in the specific case of balanced data is equivalent to using standard Acc, and readily extends to multi-class settings. Importantly, we present a list of recommendations for dealing with imbalanced data, as well as open-source code to allow the neuroscience community to replicate and extend our observations and explore alternative approaches to coping with imbalanced data.


Assuntos
Benchmarking , Encéfalo , Humanos , Magnetoencefalografia , Aprendizado de Máquina , Eletroencefalografia , Algoritmos
4.
iScience ; 25(10): 105103, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36164655

RESUMO

Creativity is a highly valued and beneficial skill that empirical research typically probes using "divergent thinking" (DT) tasks such as problem solving and novel idea generation. Here, in contrast, we examine the perceptual aspect of creativity by asking whether creative individuals are more likely to perceive recognizable forms in ambiguous stimuli -a phenomenon known as pareidolia. To this end, we designed a visual task in which participants were asked to identify as many recognizable forms as possible in cloud-like fractal images. We found that pareidolic perceptions arise more often and more rapidly in highly creative individuals. Furthermore, high-creatives report pareidolia across a broader range of image contrasts and fractal dimensions than do low creatives. These results extend the established body of work on DT by introducing divergent perception as a complementary manifestation of the creative mind, thus clarifying the perception-creation link while opening new paths for studying creative behavior in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...