Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21063, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030694

RESUMO

Adsorbents synthesized by activation and nanoparticle surface modifications are expensive and might pose health and ecological risks. Therefore, the interest in raw waste biomass materials as adsorbents is growing. In batch studies, an inexpensive and effective adsorbent is developed from raw olive stone (OS) to remove methylene blue (MB) from an aqueous solution. The OS adsorbent is characterized using scanning electron microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Brunauer-Emmett-Teller (BET) surface area. Four isotherms are used to fit equilibrium adsorption data, and four kinetic models are used to simulate kinetic adsorption behavior. The obtained BET surface area is 0.9 m2 g-1, and the SEM analysis reveals significant pores in the OS sample that might facilitate the uptake of heavy compounds. The Langmuir and Temkin isotherm models best represent the adsorbtion of MB on the OS, with a maximum monolayer adsorption capacity of 44.5 mg g-1. The best dye color removal efficiency by the OS is 93.65% from an aqueous solution of 20 ppm at the OS doses of 0.2 g for 90 min contact time. The OS adsorbent serves in five successive adsorption cycles after a simple filtration-washing-drying process, maintaining MB removal efficiency of 91, 85, 80, and 78% in cycles 2, 3, 4, and 5, respectively. The pseudo second-order model is the best model to represent the adsorption process dynamics. Indeed, the pseudo second-order and the Elovich models are the most appropriate kinetic models, according to the correlation coefficient (R2) values (1.0 and 0.935, respectively) derived from the four kinetic models. The parameters of the surface adsorption are also predicted based on the mass transfer models of intra-particle diffusion and Bangham and Burt. According to the thermodynamic analysis, dye adsorption by the OS is endothermic and spontaneous. As a result, the OS material offers an efficient adsorbent for MB removal from wastewater that is less expensive, more ecologically friendly, and economically viable.

2.
Sci Rep ; 13(1): 9837, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330584

RESUMO

In this work, the MCM-48 mesoporous material was prepared and characterized to apply it as an active adsorbent for the adsorption of 4-nitroaniline (4-Nitrobenzenamine) from wastewater. The MCM-48 characterizations were specified by implementing various techniques such as; scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, pore size distribution (PSD), and Fourier transform infrared (FTIR). The batch adsorption results showed that the MCM-48 was very active for the 4-nitroaniline adsorption from wastewater. The adsorption equilibrium results were analyzed by applying isotherms like Langmuir, Freundlich, and Temkin. The maximum experimental uptake according to type I Langmuir adsorption was found to be 90 mg g-1 approximately. The Langmuir model with determination coefficient R2 = 0.9965 is superior than the Freundlich model R2 = 0.99628 and Temkin model R2 = 0.9834. The kinetic adsorption was investigated according to pseudo 1st order, pseudo 2nd order, and Intraparticle diffusion model. The kinetic results demonstrated that the regression coefficients are so high R2 = 0.9949, that mean the pseudo 2nd order hypothesis for the adsorption mechanism process appears to be well-supported. The findings of adsorption isotherms and kinetics studies indicate the adsorption mechanism is a chemisorption and physical adsorption process.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Termodinâmica , Adsorção , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Concentração de Íons de Hidrogênio
3.
Membranes (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37367761

RESUMO

In this work, the capture of carbon dioxide using a dense hollow fiber membrane was studied experimentally and theoretically. The factors affecting the flux and recovery of carbon dioxide were studied using a lab-scale system. Experiments were conducted using a mixture of methane and carbon dioxide to simulate natural gas. The effect of changing the CO2 concentration from 2 to 10 mol%, the feed pressure from 2.5 to 7.5 bar, and the feed temperature from 20 to 40 °C, was investigated. Depending on the solution diffusion mechanism, coupled with the Dual sorption model, a comprehensive model was implemented to predict the CO2 flux through the membrane, based on resistance in the series model. Subsequently, a 2D axisymmetric model of a multilayer HFM was proposed to simulate the axial and radial diffusion of carbon dioxide in a membrane. In the three domains of fiber, the CFD technique was used to solve the equations for the transfer of momentum and mass transfer by using the COMSOL 5.6. Modeling results were validated with 27 experiments, and there was a good agreement between the simulation results and the experimental data. The experimental results show the effect of operational factors, such as the fact that temperature was directly on both gas diffusivity and mass transfer coefficient. Meanwhile, the effect of pressure was exactly the opposite, and the concentration of CO2 had almost no effect on both the diffusivity and the mass transfer coefficient. In addition, the CO2 recovery changed from 9% at a pressure equal to 2.5 bar, temperature equal to 20 °C, and a concentration of CO2 equal to 2 mol%, to 30.3% at a pressure equal to 7.5 bar, temperature equal to 30 °C, and concentration of CO2 equal 10 mol%; these conditions are the optimal operating point. The results also manifested that the operational factors that directly affect the flux are pressure and CO2 concentration, while there was no clear effect of temperature. This modeling offers valuable data about the feasibility studies and economic evaluation of a gas separation unit operation as a helpful unit in the industry.

4.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615655

RESUMO

The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Química Verde/métodos , Plantas/química , Nanoestruturas/química , Alimentos , Extratos Vegetais/química , Nanopartículas Metálicas/química
5.
Membranes (Basel) ; 12(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36422155

RESUMO

The reverse osmosis performance in removing nickel ions from artificial wastewater was experimentally and mathematically assessed. The impact of temperature, pressure, feed concentration, and feed flow rate on the permeate flux and Ni (II) rejection % were studied. Experiments were conducted using a SEPA CF042 Membrane Test Skid-TFC BW30XFR with applied pressures of 10, 20, 30, and 40 bar and feed concentrations of 25, 50, 100, and 150 ppm with varying operating temperatures of 25, 35, and 45 °C, while the feed flow rate was changed between 2, 3.2, and 4.4 L/min. The permeate flux and the Ni (II) removal % were directly proportional to the feed temperature and operating pressure, but inversely proportional to the feed concentration, where the permeate flux increased by 49% when the temperature was raised from 25 to 45 °C, while the Ni (II) removal % slightly increased by 4%. In addition, the permeate flux increased by 188% and the Ni (II) removal % increased to 95.19% when the pressure was raised from 10 to 40 bar. The feed flow rate, on the other hand, had a negligible influence on the permeate flux and Ni (II) removal %. The temperature correction factor (TCF) was determined to be directly proportional to the feed temperature, but inversely proportional to the operating pressure; nevertheless, the TCF was unaffected either by the feed flow rate or the feed concentration. Based on the experimental data, mathematical models were generated for both the permeate flux and nickel removal %. The results showed that both models matched the experimental data well.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807983

RESUMO

Persistent organic pollutants (POPs) have become a major global concern due to their large amount of utilization every year and their calcitrant nature. Due to their continuous utilization and calcitrant nature, it has led to several environmental hazards. The conventional approaches are expensive, less efficient, laborious, time-consuming, and expensive. Therefore, here in this review the authors suggest the shortcomings of conventional techniques by using nanoparticles and nanotechnology. Nanotechnology has shown immense potential for the remediation of such POPs within a short period of time with high efficiency. The present review highlights the use of nanoremediation technologies for the removal of POPs with a special focus on nanocatalysis, nanofiltration, and nanoadsorption processes. Nanoparticles such as clays, zinc oxide, iron oxide, aluminum oxide, and their composites have been used widely for the efficient remediation of POPs. Moreover, filtrations such as nanofiltration and ultrafiltration have also shown interest in the remediation of POPs from wastewater. From several pieces of literature, it has been found that nano-based techniques have shown complete removal of POPs from wastewater in comparison to conventional methods, but the cost is one of the major issues when it comes to nano- and ultrafiltration. Future research in nano-based techniques for POP remediation will solve the cost issue and will make it one of the most widely accepted and available techniques. Nano-based processes provide a sustainable solution to the problem of POPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...