Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 10(12): e0005189, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28030537

RESUMO

Since emerging in Saint Martin in 2013, chikungunya virus (CHIKV), an alphavirus transmitted by the Aedes aegypti mosquito, has infected approximately two million individuals in the Americas, with over 500,000 reported cases in the Dominican Republic (DR). CHIKV-infected patients typically present with a febrile syndrome including polyarthritis/polyarthralgia, and a macropapular rash, similar to those infected with dengue and Zika viruses, and malaria. Nevertheless, many Dominican cases are unconfirmed due to the unavailability and high cost of laboratory testing and the absence of specific treatment for CHIKV infection. To obtain a more accurate representation of chikungunya fever (CHIKF) clinical signs and symptoms, and confirm the viral lineage responsible for the DR CHIKV outbreak, we tested 194 serum samples for CHIKV RNA and IgM antibodies from patients seen in a hospital in La Romana, DR using quantitative RT-PCR and IgM capture ELISA, and performed retrospective chart reviews. RNA and antibodies were detected in 49% and 24.7% of participants, respectively. Sequencing revealed that the CHIKV strain responsible for the La Romana outbreak belonged to the Asian/American lineage and grouped phylogenetically with recent Mexican and Trinidadian isolates. Our study shows that, while CHIKV-infected individuals were infrequently diagnosed with CHIKF, uninfected patients were never falsely diagnosed with CHIKF. Participants testing positive for CHIKV RNA were more likely to present with arthralgia, although it was reported in just 20.0% of CHIKF+ individuals. High percentages of respiratory (19.6%) signs and symptoms, especially among children, were noted, though it was not possible to determine whether individuals infected with CHIKV were co-infected with other pathogens. These results suggest that CHIKV may have been underdiagnosed during this outbreak, and that CHIKF should be included in differential diagnoses of diverse undifferentiated febrile syndromes in the Americas.


Assuntos
Aedes/virologia , Anticorpos Antivirais/sangue , Febre de Chikungunya/sangue , Febre de Chikungunya/epidemiologia , Surtos de Doenças , RNA Viral/sangue , Adolescente , Adulto , Idoso , Animais , Artralgia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Criança , Pré-Escolar , Coinfecção , Diagnóstico Tardio , República Dominicana/epidemiologia , Feminino , Humanos , Imunoglobulina M/sangue , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
2.
J Virol ; 90(23): 10600-10611, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654297

RESUMO

Since the India and Indian Ocean outbreaks of 2005 and 2006, the global distribution of chikungunya virus (CHIKV) and the locations of epidemics have dramatically shifted. First, the Indian Ocean lineage (IOL) caused sustained epidemics in India and has radiated to many other countries. Second, the Asian lineage has caused frequent outbreaks in the Pacific islands and in 2013 was introduced into the Caribbean, followed by rapid spread to nearly all of the neotropics. Further, CHIKV epidemics, as well as exported cases, have been reported in central Africa after a long period of perceived silence. To understand these changes and to anticipate the future of the virus, the exact distribution, genetic diversity, transmission routes, and future epidemic potential of CHIKV require further assessment. To do so, we conducted the most comprehensive phylogenetic analysis to date, examined CHIKV evolution and transmission, and explored distinct genetic factors associated with the emergence of the East/Central/South African (ECSA) lineage, the IOL, and the Asian lineage. Our results reveal contrasting evolutionary patterns among the lineages, with growing genetic diversities observed in each, and suggest that CHIKV will continue to be a major public health threat with the potential for further emergence and spread. IMPORTANCE: Chikungunya fever is a reemerging infectious disease that is transmitted by Aedes mosquitoes and causes severe health and economic burdens in affected populations. Since the unprecedented Indian Ocean and Indian subcontinent outbreaks of 2005 and 2006, CHIKV has further expanded its geographic range, including to the Americas in 2013. Its evolution and transmission during and following these epidemics, as well as the recent evolution and spread of other lineages, require optimal assessment. Using newly obtained genome sequences, we provide a comprehensive update of the global distribution of CHIKV genetic diversity and analyze factors associated with recent outbreaks. These results provide a solid foundation for future evolutionary studies of CHIKV that can elucidate emergence mechanisms and also may help to predict future epidemics.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Regiões 5' não Traduzidas , Aedes/virologia , África/epidemiologia , América/epidemiologia , Animais , Ásia/epidemiologia , Febre de Chikungunya/transmissão , Epidemias , Evolução Molecular , Variação Genética , Genoma Viral , Humanos , Índia/epidemiologia , Insetos Vetores/virologia , Filogenia
3.
Emerg Microbes Infect ; 2(3): e13, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26038455

RESUMO

Analysis of microbial epidemics has been revolutionized by whole-genome sequencing. We recently sequenced the genomes of 601 type emm59 Group A Streptococcus (GAS) organisms responsible for an ongoing epidemic of invasive infections in Canada and some of the United States. The epidemic has been caused by the emergence of a genetically distinct, hypervirulent clone that has genetically diversified. The ease of obtaining genomic data contrasts with the relatively difficult task of translating them into insightful epidemiological information. Here, we sequenced the genomes of 90 additional invasive Canadian emm59 GAS organisms, including 80 isolated recently in 2010-2011. We used an improved bioinformatics pipeline designed to rapidly process and analyze whole-genome data and integrate strain metadata. We discovered that emm59 GAS organisms are undergoing continued multiclonal evolutionary expansion. Previously identified geographic patterns of strain dissemination are being diluted as mixing of subclones over time and space occurs. Our integrated data analysis strategy permits prompt and accurate mapping of the dissemination of bacterial organisms in an epidemic wave, permitting rapid generation of hypotheses that inform public health and virulence studies.

4.
Int J Legal Med ; 123(1): 65-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18607616

RESUMO

The Microbial Rosetta Stone (MRS) database system was developed to support the law enforcement community by providing a comprehensive and connected microbial pathogen data-information repository. To handle the myriad types of pathogen information required to support law enforcement and intelligence community investigations, a data model previously developed for medical and epidemiological information was enhanced. The data contained in MRS are a broad collection of expert-curated microbial pathogen information, but given the multitude of potential microbes and toxins that may be used in a biocrime or bioterrorism act continual information collection and updating are required. The MRS currently relates governmental community-specific pathogen priority lists, sequence metadata, taxonomic classifications, and diseases to strain collections, specific detection and treatment protocols, and experimental results for biothreat agents. The system contains software tools that help to load, curate, and connect the data. A shared MRS database can be populated in real time by multiple users in multiple locations. Querying tools also provide simple and powerful means to access the data in any part of the database.


Assuntos
Doenças Transmissíveis/microbiologia , Bases de Dados Factuais , Animais , Bactérias/classificação , Infecções Bacterianas/microbiologia , Bioterrorismo/prevenção & controle , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Eucariotos/classificação , Medicina Legal , Fungos/classificação , Órgãos Governamentais , Humanos , Micoses/microbiologia , Infecções por Protozoários/parasitologia , Interface Usuário-Computador , Viroses/virologia , Vírus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...