Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1329, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637739

RESUMO

Styrene is an important commodity chemical that is highly energy and CO2 intensive to produce. We report a redox oxidative dehydrogenation (redox-ODH) strategy to efficiently produce styrene. Facilitated by a multifunctional (Ca/Mn)1-xO@KFeO2 core-shell redox catalyst which acts as (i) a heterogeneous catalyst, (ii) an oxygen separation agent, and (iii) a selective hydrogen combustion material, redox-ODH auto-thermally converts ethylbenzene to styrene with up to 97% single-pass conversion and >94% selectivity. This represents a 72% yield increase compared to commercial dehydrogenation on a relative basis, leading to 82% energy savings and 79% CO2 emission reduction. The redox catalyst is composed of a catalytically active KFeO2 shell and a (Ca/Mn)1-xO core for reversible lattice oxygen storage and donation. The lattice oxygen donation from (Ca/Mn)1-xO sacrificially stabilizes Fe3+ in the shell to maintain high catalytic activity and coke resistance. From a practical standpoint, the redox catalyst exhibits excellent long-term performance under industrially compatible conditions.

2.
Phys Chem Chem Phys ; 22(16): 8924-8932, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32292966

RESUMO

Thermochemical air separation via cyclic redox reactions of oxide-based oxygen sorbents has the potential to achieve high energy efficiency. Although a number of promising sorbents have been investigated, further improvements in sorbent performance through a fundamental understanding of the structure-performance relationships are highly desirable. In this study, we systematically investigated the effects of A and B site dopants on the oxygen uptake/release properties (i.e., vacancy formation energy, reduction enthalpy, oxygen release temperature, and oxygen capacity) of the SrFeO3 family of perovskites as oxygen sorbents. A monotonic correlation between DFT calculated oxygen vacancy formation energy and oxygen release temperature demonstrates the effectiveness of DFT for guiding sorbent selection. Combining vacancy formation energy with stability analysis, dopants such as Ba and Mn have been identified for tuning the redox property of SrFeO3 sorbents, and increasing the oxygen capacity for temperature and pressure swings when compared to undoped SrFeO3. The Mn doped sample proved to be highly stable, with less than a 3% decrease in capacity over 1000 cycles. Although the dynamic nature of the redox process makes it difficult to use a single vacancy formation energy as the descriptor, a systematic approach was developed to correlate the oxygen storage capacities with the sorbents' compositional properties and vacancy formation energies. The combination of DFT calculations with experimental studies from this study provides a potentially effective strategy for developing improved sorbents for thermochemical air separation.

3.
iScience ; 19: 894-904, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31513974

RESUMO

Ethylene production via steam cracking of ethane and naphtha is one of the most energy and emission-intensive processes in the chemical industry. High operating temperatures, significant reaction endothermicity, and complex separations create hefty energy demands and result in substantial CO2 and NOx emissions. Meanwhile, decades of optimization have led to a thermally efficient, near-"perfect" process with ∼95% first law energy efficiency, leaving little room for further reduction in energy consumption and CO2 emissions. In this study, we demonstrate a transformational chemical looping-oxidative dehydrogenation (CL-ODH) process that offers 60%-87% emission reduction through exergy optimization. Through detailed exergy analyses, we show that CL-ODH leads to exergy savings of up to 58% in the upstream reactors and 26% in downstream separations. The feasibility of CL-ODH is supported by a robust redox catalyst that demonstrates stable activity and selectivity for over 1,400 redox cycles in a laboratory-scale fluidized bed reactor.

4.
Sci Adv ; 3(8): e1701184, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28875171

RESUMO

We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen "sink" to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes.

5.
ChemSusChem ; 10(17): 3402-3408, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28782914

RESUMO

A rationalized strategy to optimize transition-metal-oxide-based redox catalysts for water splitting and syngas generation through a hybrid solar-redox process is proposed and validated. Monometallic transition metal oxides do not possess desirable properties for water splitting; however, density functional theory calculations indicate that the redox properties of perovskite-structured BaMnx Fe1-x O3-δ can be varied by changing the B-site cation compositions. Specifically, BaMn0.5 Fe0.5 O3-δ is projected to be suitable for the hybrid solar-redox process. Experimental studies confirm such predictions, demonstrating 90 % steam-to-hydrogen conversion in water splitting and over 90 % syngas yield in the methane partial-oxidation step after repeated redox cycles. Compared to state-of-the-art solar-thermal water-splitting catalysts, the rationally designed redox catalyst reported is capable of splitting water at a significantly lower temperature and with ten-fold increase in steam-to-hydrogen conversion. Process simulations indicate the potential to operate the hybrid solar-redox process at a higher efficiency than state-of-the-art hydrogen and liquid-fuel production processes with 70 % lower CO2 emissions for hydrogen production.


Assuntos
Bário/química , Gases/química , Germânio/química , Ferro/química , Água/química , Catálise , Hidrogênio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...