Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 22(23): 3300-3313, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547164

RESUMO

The butterfly Heliconius erato occurs in various mimetic morphs. The male clasper scent gland releases an anti-aphrodisiac pheromone and additionally contains a complex mixture of up to 350 components, varying between individuals. In 114 samples of five different mimicry groups and their hybrids 750 different compounds were detected by gas chromatography/mass spectrometry (GC/MS). Many unknown components occurred, which were identified using their mass spectra, gas chromatography/infrared spectroscopy (GC/IR)-analyses, derivatization, and synthesis. Key compounds proved to be various esters of 3-oxohexan-1-ol and (Z)-3-hexen-1-ol with (S)-2,3-dihydrofarnesoic acid, accompanied by a large variety of other esters with longer terpene acids, fatty acids, and various alcohols. In addition, linear terpenes with up to seven uniformly connected isoprene units occur, e. g. farnesylfarnesol. A large number of the compounds have not been reported before from nature. Discriminant analyses of principal components of the gland contents showed that the iridescent mimicry group differs strongly from the other, mostly also separated, mimicry groups. Comparison with data from other species indicated that Heliconius recruits different biosynthetic pathways in a species-specific manner for semiochemical formation.


Assuntos
Borboletas/metabolismo , Feromônios/metabolismo , Glândulas Odoríferas/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas , Feromônios/química , Glândulas Odoríferas/química
2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795512

RESUMO

Bacteria have evolved a diverse array of signaling pathways that enable them to quickly respond to environmental changes. Understanding how these pathways reflect environmental conditions and produce an orchestrated response is an ongoing challenge. Herein, we present a role for collective modifications of environmental pH carried out by microbial colonies living on a surface. We show that by collectively adjusting the local pH value, Paenibacillus spp., specifically, regulate their swarming motility. Moreover, we show that such pH-dependent regulation can converge with the carbon repression pathway to down-regulate flagellin expression and inhibit swarming in the presence of glucose. Interestingly, our results demonstrate that the observed glucose-dependent swarming repression is not mediated by the glucose molecule per se, as commonly thought to occur in carbon repression pathways, but rather is governed by a decrease in pH due to glucose metabolism. In fact, modification of the environmental pH by neighboring bacterial species could override this glucose-dependent repression and induce swarming of Paenibacillus spp. away from a glucose-rich area. Our results suggest that bacteria can use local pH modulations to reflect nutrient availability and link individual bacterial physiology to macroscale collective behavior.


Assuntos
Fenômenos Fisiológicos Bacterianos , Interações Microbianas , Paenibacillus/fisiologia , Flagelina/metabolismo , Concentração de Íons de Hidrogênio , Proteus mirabilis/fisiologia , Xanthomonas/fisiologia
3.
Chembiochem ; 21(11): 1629-1632, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957947

RESUMO

Five new members of the salinilactone family, salinilactones D-H, are reported. These bicyclic lactones are produced by Salinispora bacteria and display extended or shortened alkyl side chains relative to the recently reported salinilactones A-C. They were identified by GC/MS, gas chromatographic retention index, and comparison with synthetic samples. We further investigated the occurrence of salinilactones across six newly proposed Salinispora species to gain insight into how compound production varies among taxa. The growth-inhibiting effect of this compound family on multiple biological systems including non-Salinispora actinomycetes was analyzed. Additionally, we found strong evidence for significant cytotoxicity of the title compounds.


Assuntos
Actinobacteria/química , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Lactonas/farmacologia , Micromonosporaceae/química , Actinobacteria/metabolismo , Actinoplanes/efeitos dos fármacos , Actinoplanes/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/classificação , Produtos Biológicos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Lactonas/química , Lactonas/classificação , Lactonas/isolamento & purificação , Testes de Sensibilidade Microbiana , Micromonospora/efeitos dos fármacos , Micromonospora/crescimento & desenvolvimento , Micromonosporaceae/efeitos dos fármacos , Micromonosporaceae/crescimento & desenvolvimento , Micromonosporaceae/metabolismo , Estrutura Molecular
4.
J Nat Prod ; 80(12): 3289-3295, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29192774

RESUMO

Bacteria can produce a wide variety of volatile compounds. Many of these volatiles carry oxygen, while nitrogen-containing volatiles are less frequently observed. We report here on the identification and synthesis of new nitrogen-containing volatiles from Salinispora pacifica CNS863 and explore the occurrence in another bacterial lineage, exemplified by Roseobacter-group bacteria. Several compound classes not reported before from bacteria were identified, such as dialkyl ureas and oxalamides. Sulfinamides have not been reported before as natural products. The actinomycete S. pacifica CNS863 produces, for example, sulfinamides N-isobutyl- and N-isopentylmethanesulfinamide (5, 6), urea N,N'-diisobutylurea (16), and oxalamide N,N'-diisobutyloxalamide (17). In addition, new imines such as (E)-1-(furan-2-yl)-N-(2-methylbutyl)methanimine (8) and (E)-2-((isobutylimino)methyl)phenol (13) were identified together with several other imines, acetamides, and formamides. Some of these compounds including the sulfinamides were also released by the Roseobacter-group bacteria Roseovarius pelophilus G5II, Pseudoruegeria sp. SK021, and Phaeobacter gallaeciensis BS107, although generally fewer compounds were detected. These nitrogen-containing volatiles seem to originate from biogenic amines derived from the amino acids valine, leucine, and isoleucine.


Assuntos
Organismos Aquáticos/metabolismo , Micromonosporaceae/metabolismo , Nitrogênio/metabolismo , Roseobacter/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...