Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26670845

RESUMO

Focused ultrasound (FUS) has been proposed for a variety of transcranial applications, including neuromodulation, tumor ablation, and blood-brain barrier opening. A flurry of activity in recent years has generated encouraging results demonstrating its feasibility in these and other applications. To date, monitoring of FUS beams has been primarily accomplished using MR guidance, where both MR thermography and elastography have been used. The recent introduction of real-time dual-mode ultrasound array (DMUA) systems offers a new paradigm in transcranial focusing. In this paper, we present first experimental results of ultrasound-guided transcranial FUS (tFUS) application in a rodent brain, both ex vivo and in vivo. DMUA imaging is used for visualization of the treatment region for placement of the focal spot within the brain. This includes the detection and localization of pulsating blood vessels at or near the target point(s). In addition, DMUA imaging is used to monitor and localize the FUS-tissue interactions in real time. In particular, a concave (40 mm radius of curvature), 32-element, 3.5-MHz DMUA prototype was used for imaging and tFUS application in ex vivo and in vivo rat models. The ex vivo experiments were used to evaluate the point spread function of the transcranial DMUA imaging at various points within the brain. In addition, DMUA-based transcranial ultrasound thermography measurements were compared with thermocouple measurements of subtherapeutic tFUS heating in rat brain ex vivo. The ex vivo setting was also used to demonstrate the capability of DMUA to produce localized thermal lesions. The in vivo experiments were designed to demonstrate the ability of the DMUA to apply, monitor, and localize subtherapeutic tFUS patterns that could be beneficial in transient blood-brain barrier opening. The results show that although the DMUA focus is degraded due to the propagation through the skull, it still produces localized heating effects within a sub-millimeter volume. In addition, DMUA transcranial echo data from brain tissue allow for reliable estimation of temperature change.


Assuntos
Encéfalo/fisiologia , Encéfalo/cirurgia , Ecoencefalografia/instrumentação , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Cirurgia Assistida por Computador/instrumentação , Termografia/instrumentação , Animais , Temperatura Corporal/fisiologia , Ecoencefalografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodos , Transdutores
2.
J Insect Physiol ; 58(4): 563-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22321763

RESUMO

The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO(3)(-) transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (Prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl(-)/nHCO(3)(-), Cl(-)/SO(4)(2-) and Cl(-)/oxalate(2-)) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes.


Assuntos
Anopheles/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Animais , Anopheles/genética , Antiportadores de Cloreto-Bicarbonato/genética , Drosophila/genética , Proteínas de Drosophila/genética , Transporte de Íons , Filogenia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...