Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2308463, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566530

RESUMO

Lipid droplets (LD) are dynamic cellular organelles of ≈1 µm diameter in yeast where a neutral lipid core is surrounded by a phospholipid monolayer and attendant proteins. Beyond the storage of lipids, opportunities for LD engineering remain underdeveloped but they show excellent potential as new biomaterials. In this research, LD from yeast Saccharomyces cerevisiae is engineered to display mCherry fluorescent protein, Halotag ligand binding protein, plasma membrane binding v-SNARE protein, and carbonic anhydrase enzyme via linkage to oleosin, an LD anchoring protein. Each protein-oleosin fusion is coded via a single gene construct. The expressed fusion proteins are specifically displayed on LD and their functions can be assessed within cells by fluorescence confocal microscopy, TEM, and as isolated materials via AFM, flow cytometry, spectrophotometry, and by enzyme activity assay. LD isolated from the cell are shown to be robust and stabilize proteins anchored into them. These engineered LD function as reporters, bind specific ligands, guide LD and their attendant proteins into union with the plasma membrane, and catalyze reactions. Here, engineered LD functions are extended well beyond traditional lipid storage toward new material applications aided by a versatile oleosin platform anchored into LD and displaying linked proteins.

2.
ACS Synth Biol ; 13(3): 888-900, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359048

RESUMO

Methanol has gained substantial attention as a substrate for biomanufacturing due to plentiful stocks and nonreliance on agriculture, and it can be sourced renewably. However, due to inevitable complexities in cell metabolism, microbial methanol conversion requires further improvement before industrial applicability. Here, we present a novel, parallel strategy using artificial cells to provide a simplified and well-defined environment for methanol utilization as artificial methylotrophic cells. We compartmentalized a methanol-utilizing enzyme cascade, including NAD-dependent methanol dehydrogenase (Mdh) and pyruvate-dependent aldolase (KHB aldolase), in cell-sized lipid vesicles using the inverted emulsion method. The reduction of cofactor NAD+ to NADH was used to quantify the conversion of methanol within individual artificial methylotrophic cells via flow cytometry. Compartmentalization of the reaction cascade in liposomes led to a 4-fold higher NADH production compared with bulk enzyme experiments, and the incorporation of KHB aldolase facilitated another 2-fold increase above the Mdh-only reaction. This methanol-utilizing platform can serve as an alternative route to speed up methanol biological conversion, eventually shifting sugar-based bioproduction toward a sustainable methanol bioeconomy.


Assuntos
Células Artificiais , Metanol , Metanol/metabolismo , NAD/metabolismo , Frutose-Bifosfato Aldolase , Aldeído Liases/metabolismo
3.
Biotechnol J ; 19(2): e2300694, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403410

RESUMO

Cycloalkanes have broad applications as specialty fuels, lubricants, and pharmaceuticals but are not currently available from renewable sources, whereas, production of microbial cycloalkanes such as cyclopropane fatty acids (CFA) has bottlenecks. Here, a systematic investigation was undertaken into the biosynthesis of CFA in Saccharomyces cerevisiae heterologously expressing bacterial CFA synthase. The enzyme catalyzes formation of a 3-membered ring in unsaturated fatty acids. Monounsaturated fatty acids in phospholipids (PL) are the site of CFA synthesis; precursor cis-Δ9 C16 and C18 fatty acids were enhanced through OLE1 and SAM2 overexpression which enhanced CFA in PL. CFA turnover from PL to storage in triacylglycerols (TAG) was achieved by phospholipase PBL2 overexpression and acyl-CoA synthase to increase flux to TAG. Consequently, CFA storage as TAG reached 12 mg g-1 DCW, improved 3-fold over the base strain and >22% of TAG was CFA. Our research improves understanding of cycloalkane biosynthesis in yeast and offers insights into processing of other exotic fatty acids.


Assuntos
Cicloparafinas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ácidos Graxos , Ciclopropanos , Fosfolipídeos , Triglicerídeos
4.
ACS Nano ; 18(5): 4478-4494, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266175

RESUMO

The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Bactérias , Bactérias Gram-Negativas , Membrana Celular , Escherichia coli , Testes de Sensibilidade Microbiana
5.
Nat Commun ; 15(1): 418, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200012

RESUMO

Cellular heterogeneity in cell populations of isogenic origin is driven by intrinsic factors such as stochastic gene expression, as well as external factors like nutrient availability and interactions with neighbouring cells. Heterogeneity promotes population fitness and thus has important implications in antimicrobial and anticancer treatments, where stress tolerance plays a significant role. Here, we study plasmid retention dynamics within a population of plasmid-complemented ura3∆0 yeast cells, and show that the exchange of complementary metabolites between plasmid-carrying prototrophs and plasmid-free auxotrophs allows the latter to survive and proliferate in selective environments. This process also affects plasmid copy number in plasmid-carrying prototrophs, further promoting cellular functional heterogeneity. Finally, we show that targeted genetic engineering can be used to suppress cross-feeding and reduce the frequency of plasmid-free auxotrophs, or to exploit it for intentional population diversification and division of labour in co-culture systems.


Assuntos
Trabalho de Parto , Saccharomyces cerevisiae , Feminino , Gravidez , Humanos , Saccharomyces cerevisiae/genética , Técnicas de Cocultura , Exercício Físico , Engenharia Genética
6.
Int J Biol Macromol ; 254(Pt 3): 127972, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944725

RESUMO

The production of hydrophobic and oil resistant cellulosic fibers usually requires severe chemical treatments and generates toxic by-products. Alternative approaches such as biocatalysis use milder conditions; lipase-catalyzed methods for grafting nanocellulose with hydrophobic ester moieties have been reported. Here, we investigate the lipase-catalyzed esterification of cellulose fibers, in native form or pretreated with 1,4-ß-glucanases, and cellulose nanocrystals (CNC) in solvent-free conditions. The fibers were compared for degree of ester formation after incubation with methyl myristate and lipase at 50 °C. After washing, the grafting of fatty esters on cellulose was confirmed by ATR-FTIR and the degree of substitution determined by 13C CP/MAS NMR (from 0.04 up to DS 0.1) confirming successful esterification. Optical photothermal infrared (O-PTIR) spectroscopy showed strongly localized presence of ester moieties on cellulose. Functional properties mirrored the degree of substitution of the cellulose materials whereby cellulose esters made with glucanase-pretreatment produced the highest water contact angle of 117° ± 9 and esterified cellulose blended at 10 % w/w content in paper composites showed significant differences in hydrophobicity and lipophilicity compared to plain paper. The esterification of cellulose was completely reversed by lipase treatment in aqueous media. These ester-functionalized fibers show potential in a wide range of packaging applications.


Assuntos
Celulose , Lipase , Celulose/química , Esterificação , Lipase/química , Ésteres/química , Biocatálise , Água , Interações Hidrofóbicas e Hidrofílicas
7.
Adv Mater ; 35(30): e2302409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37120846

RESUMO

Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.


Assuntos
Antibacterianos , Nanoestruturas , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Bactérias
8.
Biotechnol J ; 18(3): e2200390, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36427490

RESUMO

RNA aptamers bind specifically and selectively to various macromolecules, cell surfaces, and viruses and find broad applications as biosensors, diagnostics, and in therapeutic treatments and drug delivery. Currently, RNA aptamer production is via in vitro methods. Herein, a new E. coli-based approach has been demonstrated for the rapid production of multimeric RNA aptamer transcripts that are protected from degradation by burying the 5' and 3' ends of the transcript in a designed double-stranded spacer. Multimeric and fluorescent RNA aptamers were produced stably in vivo and readily isolated from RNase III-deficient cells, and their full functionalities were shown by binding assays and fluorescence measurements. This approach shows promise as a rapid and scalable bioprocess for the production of RNA aptamers at low cost.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência
9.
ACS Appl Bio Mater ; 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194892

RESUMO

Antibiotic resistance represents a serious global health concern and has stimulated the development of antimicrobial nanomaterials to combat resistant bacteria. Protein-based nanoparticles combining characteristics of both proteins and nanoparticles offer advantages including high biocompatibility, attractive biodegradability, enhanced bioavailability and functional versatility. They have played an increasing role as promising candidates for broad applications ranging from biocatalysts and drug delivery to vaccine development to cancer therapeutics. However, their application as antibacterial biomaterials to address challenging antibiotic-resistance problems has not been explicitly pursued. Herein, we describe engineering protein-only nanoparticles against resistant Gram-positive bacteria. A self-assembling peptide (P114) enables the assembly of a phage lytic enzyme (P128) into nanoparticles in response to pH reduction. Compared to native P128 and monomeric P114-P128, P128 nanoparticles (P128NANO) demonstrated a stronger bactericidal ability with high potency at lower concentrations (2-3-fold lower), particularly for methicillin-resistant Staphylococcus aureus strains. In addition, P128NANO showed an enhanced thermal (up to 65 °C) and storage stability and elicited extensive damages to bacterial cell walls. These remarkable antibacterial abilities are likely due to the P128NANO nanostructure, mediating multivalent interactions with bacterial cell walls at increased local concentrations of endolysin. The engineered endolysin nanoparticles offer a promising antimicrobial alternative to conventional antibiotics.

10.
Food Chem ; 381: 132245, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121308

RESUMO

Saturated fatty acid-containing lipids, such as milkfat, may protect long chain polyunsaturated fatty acids in fish oil when blended together into solid lipid particles (SLPs). One of the main challenges of SLPs is structural polymorphism, which can lead to expulsion of the protected component during prolonged storage. To investigate this phenomenon, the change in thermal and crystalline behaviours, and fatty acid distribution, were analysed in SLPs of fish oil and milkfat during storage at different temperatures for up to 28 days. X-ray diffraction analysis showed changes in molten and crystalline states occurred even at -22 °C. Room temperature (21 °C) storage led to more than 45% molten state but SLPs retained their initial shape. Confocal Raman Spectroscopy of the SLPs showed the distribution of fatty acids was not uniform, with 10 µm outermost layer of predominantly saturated fatty acids likely responsible for the intact SLP shape and stability of the core.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Ácidos Graxos Ômega-3/química , Óleos de Peixe/química
11.
J Food Sci ; 87(2): 528-542, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075646

RESUMO

Bean hydration is a crucial, yet complex process affected both by inherent bean properties (intrinsic) and properties of the soak medium (extrinsic) whose relationship with hydration kinetics are not clear. This work investigated the effect of temperature (30-80°C) on the hydration behavior and kinetics of two commonly consumed Phaseolus vulgaris L. beans-red kidney and small red beans. Both beans have similar morphology (except size), chemical composition and seed coat surface structure but, surprisingly, their hydration behaviors differed markedly. Small red hydration followed a sigmoidal shape (to 70°C) with a prominent lag phase at 30-40°C, while fast hydrating red kidney beans followed a downward concave shape, suggesting different mechanisms of water uptake. The hydration behaviors for red kidney and small red beans were modeled using Peleg (R2 ≥0.97) and sigmoidal (R2 ≥0.99) models, respectively. Water uptake rate increased, while equilibrium moisture content decreased for both bean varieties with increasing temperature. A simplified model was developed for small red beans which can predict hydration as a function of temperature and time with good accuracy ( M mod = M expt . × 1.06 - 0.56 ${M_{{\rm{mod}}}} = {M_{{\rm{expt}}{\rm{.}}}}\ \times 1.06 - 0.56$ , R2  = 0.99, RMSE = 4.5). Microscopic examination of cross sections of seed coats showed nearly double parenchyma layer thickness in small red bean and seed coat lipid analysis showed significantly higher proportion of saturated fatty acids which, together, may be responsible for slower water uptake observed in small red beans. PRACTICAL APPLICATION: Hydration is the crucial stage in dry bean processing, which precedes other processes like cooking, extraction, fermentation, sprouting, and consumption. Industrial bean processing is still slow and batch process and needs improvement. This work shows the effect of various bean properties and soaking medium temperature on the hydration behavior of two commonly consumed red beans. The work also modeled the hydration kinetics of two Phaseolus vulgaris L. beans which can be adopted by bean processors for process design and optimization.


Assuntos
Phaseolus , Temperatura Alta , Cinética , Lipídeos , Sementes
12.
Mol Phylogenet Evol ; 139: 106527, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173882

RESUMO

The bacterial multicomponent monooxygenase (BMM) family has evolved to oxidise a wide array of hydrocarbon substrates of importance to environmental emissions and biotechnology: foremost amongst these is methane, which requires among the most powerful oxidant in biology to activate. To understand how the BMM evolved methane oxidation activity, we investigated the changes in the enzyme family at different levels: operonic, phylogenetic analysis of the catalytic hydroxylase, subunit or folding factor presence, and sequence-function analysis across the entirety of the BMM phylogeny. Our results show that the BMM evolution of new activities was enabled by incremental increases in oxidative power of the active site, and these occur in multiple branches of the hydroxylase phylogenetic tree. While the hydroxylase primary sequence changes that resulted in increased oxidative power of the enzyme appear to be minor, the principle evolutionary advances enabling methane activity occurred in the other components of the BMM complex and in the recruitment of stability proteins. We propose that enzyme assembly and stabilization factors have independently-evolved multiple times in the BMM family to support enzymes that oxidise increasingly difficult substrates. Herein, we show an important example of evolution of catalytic function where modifications to the active site and substrate accessibility, which are the usual focus of enzyme evolution, are overshadowed by broader scale changes to structural stabilization and non-catalytic unit development. Retracing macroscale changes during enzyme evolution, as demonstrated here, should find ready application to other enzyme systems and in protein design.


Assuntos
Bactérias/classificação , Bactérias/genética , Metano/metabolismo , Oxigenases de Função Mista/metabolismo , Filogenia , Bactérias/enzimologia , Domínio Catalítico , Oxigenases de Função Mista/genética , Oxirredução
13.
Biotechnol Biofuels ; 12: 98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044011

RESUMO

BACKGROUND: Yeast has been the focus of development of cell biofactories for the production of lipids and interest in the field has been driven by the need for sustainably sourced lipids for use in a broad range of industrial applications. Previously, we reported a metabolic engineering strategy for enhanced lipid production in yeast which delivered high per-cell lipid but with low cell growth and compromised physiology. To investigate the relationship between lipid engineering and cellular physiological responses and to identify further metabolic engineering targets, we analysed transcriptomes and measured cell physiology parameters in engineered strains. RESULTS: In the engineering strategy, the central carbon pathway was reprogrammed to provide more precursors for lipid production and lipid accumulation and sequestration steps were enhanced through the expression of heterologous genes. Genes coding for enzymes within the pentose phosphate, beta-oxidation pathways, ATP and NADPH biosynthesis had lower transcript levels in engineered cells. Meanwhile, flow-cytometry analysis of fluorescent-dye stained cells showed the highest reactive oxygen species (ROS) levels and mitochondrial membrane potential (Δψm) in cells with the highest lipid content, supporting the known relationship between mitochondrial activity and ROS generation. High intracellular ROS and low membrane integrity were not ameliorated by application of antioxidants. CONCLUSIONS: The limited intracellular energy supplies and the unbalanced redox environment could be regarded as targets for further lipid engineering, similarly for native lipid accumulation genes that were upregulated. Thus, lipid pathway engineering has an important effect on the central carbon pathway, directing these towards lipid production and sacrificing the precursors, energy and cofactor supply to satisfy homeostatic metabolic requirements.

14.
Biotechnol J ; 14(4): e1800487, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30298619

RESUMO

The unique strained ring structure in cyclopropane fatty acids (CFA) conveys oxidative stability and lubricity to lipids. These attributes are highly valuable for industrial applications such as cosmetics and specialist lubrication but there is currently no commercial source of the lipid. Here, built on recently engineered strains of Saccharomyces cerevisiae, the authors have developed an efficient strategy for CFA production. Expression of the Escherichia coli cyclopropane fatty acid synthetase (Ec.CFAS) in the engineered yeast resulted in formation of cis-9,10-methylene-hexadecanoic and octadecanoic acids in both the phospholipid (PL) and triacylglycerol (TAG) fractions. CFA concentration in TAG of engineered yeast is 12 mg CFA g-1 DCW (fourfold above the strain expressing CFAS only). The yield of CFA increases from 13.2 to 68.3 mg L-1 , the highest reported in yeast, using a two-stage bioprocess strategy that separated cell growth from the lipid modification stage. Strategies for further improvement of this valuable lipid are proposed.


Assuntos
Ácidos Graxos/biossíntese , Lipídeos/biossíntese , Fosfolipídeos/biossíntese , Ácidos Esteáricos/química , Ciclopropanos/química , Escherichia coli/genética , Ácidos Graxos/química , Regulação Bacteriana da Expressão Gênica/genética , Lipídeos/química , Ácidos Palmíticos/química , Fosfolipídeos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Triglicerídeos/química , Fermento Seco/genética
15.
Mol Phylogenet Evol ; 129: 171-181, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30149053

RESUMO

The critical role that bacterial methanotrophs have in regulating the environmental concentrations of the potent greenhouse gas, methane, under aerobic conditions is dependent on monooxygenase enzymes which oxidise the substrate as both a carbon and energy source. Despite the importance of these organisms, the evolutionary origins of aerobic methane oxidation capability and its relationship to proteobacterial evolution is not well understood. Here we investigated the phylogenetic relationship of proteobacterial methanotrophs with related, non-methanotrophic bacteria using 16S rRNA and the evolution of two forms of methane monooxygenase: membrane bound (pMMO and pXMO) and cytoplasmic (sMMO). Through analysis we have concluded that extant proteobacterial methanotrophs evolved from up to five ancestral species, and that all three methane monooxygenase systems, pMMO, pXMO and sMMO, were likely present in the ancestral species (although pXMO and sMMO are not present in most of the present day methanotrophs). Here we propose that the three monooxygenase systems entered the ancestral species by horizontal gene transfer, with these likely to have pre-existing physiological and metabolic attributes that supported conversion to methanotrophy. Further, we suggest that prior to these enzyme systems developing methane oxidation capabilities, the membrane-bound and cytoplasmic monooxygenases were already both functionally and phylogenetically associated. These results not only suggest that sMMO and pXMO have a far greater role in methanotrophic evolution than previously understood but also implies that the co-inheritance of membrane bound and cytoplasmic monooxygenases have roles additional to that of supporting methanotrophy.


Assuntos
Transferência Genética Horizontal , Oxigenases/genética , Oxigenases/metabolismo , Proteobactérias/enzimologia , Proteobactérias/genética , Teorema de Bayes , Metano/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Solubilidade
16.
ACS Nano ; 12(7): 6956-6967, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29928801

RESUMO

Protein-based nanomaterials are gaining importance in biomedical and biosensor applications where tunability of the protein particle size is highly desirable. Rationally designed proteins and peptides offer control over molecular interactions between monomeric protein units to modulate their self-assembly and thus particle formation. Here, using an example enzyme-peptide system produced as a single construct by bacterial expression, we explore how solution conditions affect the formation and size of protein nanoparticles. We found two independent routes to particle formation, one facilitated by charge interactions between protein-peptide and peptide-peptide exemplified by pH change or the presence of NO3- or NH4+ and the second route via metal-ion coordination ( e.g., Mg2+) within peptides. We further demonstrate that the two independent factors of pH and Mg2+ ions can be combined to regulate nanoparticle size. Charge interactions between protein-peptide monomers play a key role in either promoting or suppressing protein assembly; the intermolecular contact points within protein-peptide monomers involved in nanoparticle formation were identified by chemical cross-linking mass spectrometry. Importantly, the protein nanoparticles retain their catalytic activities, suggesting that their native structures are unaffected. Once formed, protein nanoparticles remain stable over long periods of storage or with changed solution conditions. Nevertheless, formation of nanoparticles is also reversible-they can be disassembled by desalting the buffer to remove complexing agents ( e.g., Mg2+). This study defines the factors controlling formation of protein nanoparticles driven by self-assembly peptides and an understanding of complex ion-peptide interactions involved within, offering a convenient approach to tailor protein nanoparticles without changing amino acid sequence.


Assuntos
Nanopartículas/química , Peptídeos/química , Proteínas/química , Íons/química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Peptídeos/síntese química , Soluções , Propriedades de Superfície
17.
J Ind Microbiol Biotechnol ; 45(8): 707-717, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29804179

RESUMO

Microbially produced lipids have attracted attention for their environmental benefits and commercial value. We have combined lipid pathway engineering in Saccharomyces cerevisiae yeast with bioprocess design to improve productivity and explore barriers to enhanced lipid production. Initially, individual gene expression was tested for impact on yeast growth and lipid production. Then, two base strains were prepared for enhanced lipid accumulation and stabilization steps by combining DGAT1, ΔTgl3 with or without Atclo1, which increased lipid content ~ 1.8-fold but reduced cell viability. Next, fatty acid (FA) biosynthesis genes Ald6-SEACSL641P alone or with ACC1** were co-expressed in base strains, which significantly improved lipid content (8.0% DCW, 2.6-fold than control), but severely reduced yeast growth and cell viability. Finally, a designed two-stage process convincingly ameliorated the negative effects, resulting in normal cell growth, very high lipid productivity (307 mg/L, 4.6-fold above control) and improved cell viability.


Assuntos
Lipídeos/biossíntese , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Proliferação de Células , Etanol/química , Ácidos Graxos/biossíntese , Regulação Fúngica da Expressão Gênica , Glicerol/química , Microbiologia Industrial , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de RNA
18.
Biotechnol Biofuels ; 11: 106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643936

RESUMO

BACKGROUND: Biodiesel is a valuable renewable fuel made from derivatized fatty acids produced in plants, animals, and oleaginous microbes. Of the latter, yeasts are of special interest due to their wide use in biotechnology, ability to synthesize fatty acids and store large amounts of triacylglycerols while utilizing non-food carbon sources. While yeast efficiently produce lipids, genetic modification and indeed, lipid pathway metabolic engineering, is usually required for cost-effective production. Traditionally, gas chromatography (GC) is used to measure fatty acid production and to track the success of a metabolic engineering strategy in a microbial culture; here we have employed vibrational spectroscopy approaches at population and single cell level of engineered yeast while simultaneously investigating metabolite levels in subcellular structures. RESULTS: Firstly, a strong correlation (r2 > 0.99) was established between Fourier transform infrared (FTIR) lipid in intact cells and GC analysis of fatty acid methyl esters in the differently engineered strains. Confocal Raman spectroscopy of individual cells carrying genetic modifications to enhance fatty acid synthesis and lipid accumulation revealed changes to the lipid body (LB), the storage organelle for lipids in yeast, with their number increasing markedly (up to tenfold higher); LB size was almost double in the strain that also expressed a LB stabilizing gene but considerable variation was also noted between cells. Raman spectroscopy revealed a clear trend toward reduced unsaturated fatty acid content in lipids of cells carrying more complex metabolic engineering. Atomic force microscopy-infrared spectroscopy (AFM-IR) analysis of individual cells indicated large differences in subcellular constituents between strains: cells of the most highly engineered strain had elevated lipid and much reduced carbohydrate in their cytoplasm compared with unmodified cells. CONCLUSIONS: Vibrational spectroscopy analysis allowed the simultaneous measurement of strain variability in metabolite production and impact on cellular structures as a result of different gene introductions or knockouts, within a lipid metabolic engineering strategy and these inform the next steps in comprehensive lipid engineering. Additionally, single cell spectroscopic analysis measures heterogeneity in metabolite production across microbial cultures under genetic modification, an emerging issue for efficient biotechnological production.

19.
Biotechnol Appl Biochem ; 65(2): 138-144, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28649761

RESUMO

As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks.


Assuntos
Arabidopsis/genética , Biocombustíveis , Ácidos Graxos/genética , Microbiologia Industrial/métodos , Óleos Industriais , Microalgas/genética , Saccharomyces cerevisiae/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Biocombustíveis/análise , Biocombustíveis/microbiologia , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Óleos Industriais/análise , Óleos Industriais/microbiologia , Engenharia Metabólica/métodos , Microalgas/enzimologia , Microalgas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
20.
Sci Rep ; 7(1): 17315, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29230049

RESUMO

Ferulic acid esterases (FAE, EC 3.1.1.73) cleave the arabinose hydroxycinnamate ester in plant hemicellulose and other related substrates. FAE are commonly categorised as type A-D based on catalytic activities towards model, short alkyl chain esters of hydroxycinnamates. However, this system correlates poorly with sequence and structural features of the enzymes. In this study, we investigated the basis of the type A categorisation of an FAE from Aspergillus niger, AnFaeA, by comparing its activity toward methyl and arabinose hydroxycinnamate esters. kcat/Km ratios revealed that AnFaeA hydrolysed arabinose ferulate 1600-fold, and arabinose caffeate 6.5 times more efficiently than their methyl ester counterparts. Furthermore, small docking studies showed that while all substrates adopted a catalytic orientation with requisite proximity to the catalytic serine, methyl caffeate and methyl p-coumarate preferentially formed alternative non-catalytic conformations that were energetically favoured. Arabinose ferulate was unable to adopt the alternative conformation while arabinose caffeate preferred the catalytic orientation. This study demonstrates that use of short alkyl chain hydroxycinnnamate esters can result in activity misclassification. The findings of this study provide a basis for developing a robust classification system for FAE and form the basis of sequence-function relationships for this class.


Assuntos
Arabinose/metabolismo , Aspergillus niger/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Cinamatos/metabolismo , Ácidos Cumáricos/metabolismo , Simulação de Acoplamento Molecular , Catálise , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...