Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470767

RESUMO

We consider the influence of different nanoparticles or micrometre-scale colloidal objects, which we commonly refer to as particles, on liquid crystalline (LC) orientational order in essentially spatially homogeneous particle-LC mixtures. We first illustrate the effects of coupling a single particle with the surrounding nematic molecular field. A particle could either act as a "dilution", i.e., weakly distorting local effective orientational field, or as a source of strong distortions. In the strong anchoring limit, particles could effectively act as topological point defects, whose topological charge q depends on particle topology. The most common particles exhibit spherical topology and consequently act as q = 1 monopoles. Depending on the particle's geometry, these effective monopoles could locally induce either point-like or line-like defects in the surrounding LC host so that the total topological charge of the system equals zero. The resulting system's configuration is topologically equivalent to a crystal-like array of monopole defects with alternating topological charges. Such configurations could be trapped in metastable or stable configurations, where the history of the sample determines a configuration selection.

2.
Eur Phys J E Soft Matter ; 45(9): 78, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125597

RESUMO

Topological defects (TDs) are a consequence of symmetry breaking phase transitions and are ubiquitous in nature. An ideal testbed for their study are liquid crystals (LCs) owing to their large response to external stimuli and their large electrical and optical anisotropies. In this paper, we perform numerical simulations of topological defects of [Formula: see text] or [Formula: see text] enforced by the confining boundary. We use the Landau-de Gennes phenomenological model in terms of the tensor nematic order parameter and the Jones beam propagation model to simulate polarized optical microscopy images. We demonstrate the structure of closed disclination loops near the boundary known as boojums that can be topologically charged or chargeless. We show that pairs of chargeless disclination loops can interact repulsively or attractively depending on if they are arranged parallel or antiparallel, respectively. Sufficiently closely spaced antiparallel pairs can rewire while parallel pairs simply exhibit stronger bending due to the repulsion.

3.
Soft Matter ; 16(20): 4814-4822, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32409816

RESUMO

An escaped radial director profile in a nematic liquid crystal cell can be transformed into a pair of strength m = +1/2 surface defects (and their associated disclination lines) at a threshold electric field. Analogously, a half-integer defect pair can be transformed at a threshold electric field into a director profile that escapes into the third dimension. These transitions were demonstrated experimentally and numerically, and are discussed in terms of topologically discontinuous and continuous pathways that connect the two states. Additionally, we note that the pair of disclination lines associated with the m = +1/2 surface defects were observed to co-rotate around a common point for a sufficiently large electric field at a sufficiently low frequency.

4.
Phys Rev Res ; 2(1)2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33870201

RESUMO

Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout Nature. As an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could be exploited in a rich variety of technological applications. Here we report on robust theoretical and experimental investigations in which an external electric field is used to switch between pre-determined stable chargeless disclination patterns in a nematic cell, where the cell is sufficiently thick that the disclinations start and terminate at the same surface. The different defect configurations are stabilised by a master substrate that enforces a lattice of surface defects exhibiting zero total topological charge value. Theoretically, we model disclination configurations using a Landau-de Gennes phenomenological model. Experimentally, we enable diverse defect patterns by implementing an in-house-developed Atomic Force Measurement scribing method, where NLC configurations are monitored via polarised optical microscopy. We show numerically and experimentally that an "alphabet" of up to 18 unique line defect configurations can be stabilised in a 4x4 lattice of alternating s=±1 surface defects, which can be "rewired" multistably using appropriate field manipulation. Our proof-of-concept mechanism may lead to a variety of applications, such as multistable optical displays and rewirable nanowires. Our studies also are of interest from a fundamental perspective. We demonstrate that a chargeless line could simultaneously exhibit defect-antidefect properties. Consequently, a pair of such antiparallel disclinations exhibits an attractive interaction. For a sufficiently closely-spaced pair of substrate-pinned defects, this interaction could trigger rewiring, or annihilation if defects are depinned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...