Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630315

RESUMO

The transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD+) to target proteins is mediated by a class of human diphtheria toxin-like ADP-ribosyltransferases (ARTDs; previously referred to as poly-ADP-ribose polymerases or PARPs) and the removal of ADPr is catalyzed by a family of glycohydrolases. Although thousands of potential ADPr modification sites have been identified using high-throughput mass-spectrometry, relatively little is known about the sequence specificity encoded near the modification site. Herein, we present a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method that facilitates the in vitro analysis of proximal factors that guide ARTD target selection. We identify a minimal 5-mer peptide sequence that is necessary and sufficient to drive glutamate/aspartate targeting using PARP14 while highlighting the importance of the adjacent residues in PARP14 targeting. We measure the stability of the resultant ester bond and show that non-enzymatic removal is pH and temperature dependent, sequence independent, and occurs within hours. Finally, we use the ADPr-peptides to highlight differential activities within the glycohydrolase family and their sequence preferences. Our results highlight (1) the utility of MALDI-TOF in analyzing proximal ARTD-substrate interactions and (2) the importance of peptide sequences in governing ADPr transfer and removal.


Assuntos
ADP Ribose Transferases , Glicosídeo Hidrolases , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adenosina Difosfato Ribose , Ácido Glutâmico , Poli(ADP-Ribose) Polimerases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...