Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960704

RESUMO

The Polycomb Repressive Complex 2 (PRC2) regulates corticogenesis, yet the consequences of mutations to this epigenetic modifier in the mature brain are poorly defined. Importantly, PRC2 core genes are haploinsufficient and causative of several human neurodevelopmental disorders. To address the role of PRC2 in mature cortical structure and function, we conditionally deleted the PRC2 gene Eed from the developing mouse dorsal telencephalon. Adult homozygotes displayed smaller forebrain structures. Single-nucleus transcriptomics revealed that glutamatergic neurons were particularly affected, exhibiting dysregulated gene expression profiles, accompanied by aberrations in neuronal morphology and connectivity. Remarkably, homozygous mice performed well on challenging cognitive tasks. In contrast, while heterozygous mice did not exhibit clear anatomical or behavioral differences, they displayed dysregulation of neuronal genes and altered neuronal morphology that was strikingly different from homozygous phenotypes. Collectively, these data reveal how alterations to PRC2 function shape the mature brain and reveal a dose-specific role for PRC2 in determining glutamatergic neuron identity.


Assuntos
Ácido Glutâmico , Neurogênese , Neurônios , Complexo Repressor Polycomb 2 , Animais , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , Neurogênese/fisiologia , Ácido Glutâmico/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Masculino , Camundongos Endogâmicos C57BL , Feminino , Camundongos Transgênicos
2.
Commun Biol ; 7(1): 845, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987622

RESUMO

Adult Neural Stem Cells (aNSCs) in the ventricular-subventricular zone (V-SVZ) are largely quiescent. Here, we characterize the mechanism underlying the functional role of a cell-signalling inhibitory protein, LRIG1, in the control of aNSCs proliferation. Using Lrig1 knockout models, we show that Lrig1 ablation results in increased aNSCs proliferation with no change in neuronal progeny and that this hyperproliferation likely does not result solely from activation of the epidermal growth factor receptor (EGFR). Loss of LRIG1, however, also leads to impaired activation of transforming growth factor beta (TGFß) and bone morphogenic protein (BMP) signalling. Biochemically, we show that LRIG1 binds TGFß/BMP receptors and the TGFß1 ligand. Finally, we show that the consequences of these interactions are to facilitate SMAD phosphorylation. Collectively, these data suggest that unlike in embryonic NSCs where EGFR may be the primary mechanism of action, in aNSCs, LRIG1 and TGFß pathways function together to fulfill their inhibitory roles.


Assuntos
Proteínas Morfogenéticas Ósseas , Proliferação de Células , Glicoproteínas de Membrana , Células-Tronco Neurais , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Fator de Crescimento Transformador beta/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Camundongos Knockout , Células-Tronco Adultas/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas do Tecido Nervoso
3.
Cells ; 11(15)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954220

RESUMO

Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix-/-) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix-/- mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix-/- and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix-/- mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.


Assuntos
Epêndima , Hidrocefalia , Fatores de Transcrição NFI , Animais , Fenômenos Fisiológicos Celulares , Hidrocefalia/genética , Ventrículos Laterais , Camundongos , Fatores de Transcrição NFI/genética , Neuroglia
4.
Biol Reprod ; 106(6): 1191-1205, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35243487

RESUMO

Members of the nuclear factor I (NFI) family are key regulators of stem cell biology during development, with well-documented roles for NFIA, NFIB, and NFIX in a variety of developing tissues, including brain, muscle, and lung. Given the central role these factors play in stem cell biology, we posited that they may be pivotal for spermatogonial stem cells or further developing spermatogonia during testicular development. Surprisingly, in stark contrast to other developing organ systems where NFI members are co-expressed, these NFI family members show discrete patterns of expression within the seminiferous tubules. Sertoli cells (spermatogenic supporting cells) express NFIA, spermatocytes express NFIX, round spermatids express NFIB, and peritubular myoid cells express each of these three family members. Further analysis of NFIX expression during the cycle of the seminiferous epithelium revealed expression not in spermatogonia, as we anticipated, but in spermatocytes. These data suggested a potential role for NFIX in spermatogenesis. To investigate, we analyzed mice with constitutive deletion of Nfix (Nfix-null). Assessment of germ cells in the postnatal day 20 (P20) testes of Nfix-null mice revealed that spermatocytes initiate meiosis, but zygotene stage spermatocytes display structural defects in the synaptonemal complex, and increased instances of unrepaired DNA double-strand breaks. Many developing spermatocytes in the Nfix-null testis exhibited multinucleation. As a result of these defects, spermatogenesis is blocked at early diplotene and very few round spermatids are produced. Collectively, these novel data establish the global requirement for NFIX in correct meiotic progression during the first wave of spermatogenesis.


Assuntos
Fatores de Transcrição NFI , Espermatogônias , Testículo , Animais , Masculino , Meiose , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/metabolismo
5.
Semin Cell Dev Biol ; 112: 61-68, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32771376

RESUMO

Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.


Assuntos
Envelhecimento/genética , Epêndima/metabolismo , Lipídeos/genética , Células-Tronco Neurais/metabolismo , Envelhecimento/patologia , Animais , Proliferação de Células/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Epêndima/crescimento & desenvolvimento , Epêndima/patologia , Humanos , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurônios/metabolismo , Neurônios/patologia , Telencéfalo/metabolismo , Telencéfalo/patologia
6.
Gene Expr Patterns ; 35: 119098, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068188

RESUMO

The Nuclear factor I proteins comprise a family of transcription factors that are expressed in many developing and mature cell populations, including within the central nervous system. Within the embryonic mouse spinal cord, NFIA and NFIB are expressed by neural progenitor cells lining the central canal, where they act to promote astrocytic and oligodendrocytic lineage specification. Cells lining the mature spinal cord central canal retain characteristics of neural progenitor cells, but the expression of NFIA and NFIB within the mature spinal cord at a cell-type-specific level remains undefined. Here, we investigated where these two transcription factors are expressed within the adult mouse spinal cord. We reveal that both factors are expressed in similar cohorts of mature cells, including ependymal cells, interneurons and motor neurons. We also show robust and widespread expression of NFIA and NFIB within nestin-expressing cells following injury to the spinal cord. Collectively, these data provide a basis to further define what functional role(s) NFIA and NFIB play within the adult spinal cord.


Assuntos
Fatores de Transcrição NFI/genética , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Epêndima/citologia , Epêndima/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Medula Espinal/citologia
7.
Genes Brain Behav ; 19(4): e12637, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909872

RESUMO

Sotos syndrome is a developmental disorder characterized by a suite of clinical features. In children, the three cardinal features of Sotos syndrome are a characteristic facial appearance, learning disability and overgrowth (height and/or head circumference > 2 SDs above average). These features are also evident in adults with this syndrome. Over 90% of Sotos syndrome patients are haploinsufficient for the gene encoding nuclear receptor-binding Su(var)3-9, Enhancer-of-zesteand Trithorax domain-containing protein 1 (NSD1). NSD1 is a histone methyltransferase that catalyzes the methylation of lysine residue 36 on histone H3. However, although the symptomology of Sotos syndrome is well established, many aspects of NSD1 biology remain unknown. Here, we assessed the expression of Nsd1 within the mouse brain, and showed a predominantly neuronal pattern of expression for this histone-modifying factor. We also generated a mouse strain lacking one allele of Nsd1 and analyzed morphological and behavioral characteristics in these mice, showing behavioral characteristics reminiscent of some of the deficits seen in Sotos syndrome patients.


Assuntos
Córtex Cerebral/patologia , Histona-Lisina N-Metiltransferase/genética , Síndrome de Sotos/genética , Animais , Córtex Cerebral/metabolismo , Feminino , Heterozigoto , Histona-Lisina N-Metiltransferase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Síndrome de Sotos/patologia
8.
Cerebellum ; 19(1): 89-101, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31838646

RESUMO

Transcriptional regulation plays a central role in controlling neural stem and progenitor cell proliferation and differentiation during neurogenesis. For instance, transcription factors from the nuclear factor I (NFI) family have been shown to co-ordinate neural stem and progenitor cell differentiation within multiple regions of the embryonic nervous system, including the neocortex, hippocampus, spinal cord and cerebellum. Knockout of individual Nfi genes culminates in similar phenotypes, suggestive of common target genes for these transcription factors. However, whether or not the NFI family regulates common suites of genes remains poorly defined. Here, we use granule neuron precursors (GNPs) of the postnatal murine cerebellum as a model system to analyse regulatory targets of three members of the NFI family: NFIA, NFIB and NFIX. By integrating transcriptomic profiling (RNA-seq) of Nfia- and Nfix-deficient GNPs with epigenomic profiling (ChIP-seq against NFIA, NFIB and NFIX, and DNase I hypersensitivity assays), we reveal that these transcription factors share a large set of potential transcriptional targets, suggestive of complementary roles for these NFI family members in promoting neural development.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Fatores de Transcrição NFI/metabolismo , Animais , Animais Recém-Nascidos , Cerebelo/citologia , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFI/genética , Neurogênese/fisiologia , Gravidez
9.
J Mol Histol ; 50(6): 573-580, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31667690

RESUMO

Microscopy is advancing at a rapid pace, enabling high-speed, high-resolution analyses to be conducted in a wide range of cellular contexts. For example, the capacity to quickly capture high-resolution images from multiple optical sections over multiple channels with confocal microscopy has allowed researchers to gain deeper understanding of tissue morphology via techniques such as three-dimensional rendering, as have more recent advances such as lattice light sheet microscopy and superresolution structured illumination microscopy. With this, though, comes the challenge of storing, curating, analysing and sharing data. While there are ways in which this has been attempted previously, few approaches have provided a central repository in which all of these different aspects of microscopy can be seamlessly integrated. Here, we describe a web-based storage and analysis platform called Microndata, that enables relatively straightforward storage, annotation, tracking, analysis and multi-user access to micrographs. This easy to use tool will simplify and harmonise laboratory work flows, and, importantly, will provide a central storage repository that is readily accessed, even after the researcher responsible for capturing the images has left the laboratory. Microndata is open-source software, available at http://www.microndata.net/.


Assuntos
Biologia Computacional/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Software , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Reprodutibilidade dos Testes
10.
Cereb Cortex ; 29(8): 3590-3604, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272140

RESUMO

Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular-subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


Assuntos
Movimento Celular/genética , Giro Denteado/citologia , Ventrículos Laterais/citologia , Fatores de Transcrição NFI/genética , Células-Tronco Neurais/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Camundongos , Células-Tronco Neurais/citologia , Neurogênese/genética , Receptores do Fator Natriurético Atrial/genética
11.
EBioMedicine ; 39: 388-400, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30503862

RESUMO

BACKGROUND: Nuclear Factor One X (NFIX) haploinsufficiency in humans results in Malan syndrome, a disorder characterized by overgrowth, macrocephaly and intellectual disability. Although clinical assessments have determined the underlying symptomology of Malan syndrome, the fundamental mechanisms contributing to the enlarged head circumference and intellectual disability in these patients remains undefined. METHODS: Here, we used Nfix heterozygous mice as a model to investigate these aspects of Malan syndrome. Volumetric magnetic resonance imaging (MRI) was used to calculate the volumes of 20 brain sub regions. Diffusion tensor MRI was used to perform tractography-based analyses of the corpus callosum, hippocampal commissure, and anterior commissure, as well as structural connectome mapping of the whole brain. Immunohistochemistry examined the neocortical cellular populations. Two behavioral assays were performed, including the active place avoidance task to assess spatial navigation and learning and memory function, and the 3-chambered sociability task to examine social behaviour. FINDINGS: Adult Nfix+/- mice exhibit significantly increased brain volume (megalencephaly) compared to wildtypes, with the cerebral cortex showing the highest increase. Moreover, all three forebrain commissures, in particular the anterior commissure, revealed significantly reduced fractional anisotropy, axial and radial diffusivity, and tract density intensity. Structural connectome analyses revealed aberrant connectivity between many crucial brain regions. Finally, Nfix+/- mice exhibit behavioral deficits that model intellectual disability. INTERPRETATION: Collectively, these data provide a significant conceptual advance in our understanding of Malan syndrome by suggesting that megalencephaly underlies the enlarged head size of these patients, and that disrupted cortical connectivity may contribute to the intellectual disability these patients exhibit. FUND: Australian Research Council (ARC) Discovery Project Grants, ARC Fellowship, NYSTEM and Australian Postgraduate Fellowships.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Haploinsuficiência , Deficiência Intelectual/genética , Megalencefalia/genética , Fatores de Transcrição NFI/genética , Animais , Conectoma , Modelos Animais de Doenças , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/psicologia , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/psicologia , Camundongos , Tamanho do Órgão , Aprendizagem Espacial
12.
BMC Res Notes ; 11(1): 564, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081965

RESUMO

OBJECTIVE: The active place avoidance task (APA) is a behavioural task used to assess learning and memory in rodents. This task relies on the hippocampus, a region of the cerebral cortex capable of generating new neurons from neural stem cells. In this study, to gain further insight into the behavioural phenotype of mice deficient in the transcription factor Nfix, a gene expressed by adult neural stem cells, we examined learning and memory parameters from the APA task that were not published in our original investigation. We analysed time to first and second shock, maximum path and time of shock avoidance, number of entries into the shock zone and time spent in the shock zone. We also assessed performance in the APA task based on sex. RESULTS: We found mice deficient in Nfix displayed decreased latency to second shock compared to the control mice. Nfix deficient mice entered the shock zone more frequently and also spent more time in the shock zone. Our data provides further insights into the memory deficits evident in Nfix mutant mice, indicating these mice have a memory retrieval problem and may employ a different navigation strategy in the APA task.


Assuntos
Hipocampo/fisiologia , Aprendizagem , Memória , Fatores de Transcrição NFI/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais
13.
Dev Biol ; 432(2): 286-297, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29106906

RESUMO

During mouse spinal cord development, ventricular zone progenitor cells transition from producing neurons to producing glia at approximately embryonic day 11.5, a process known as the gliogenic switch. The transcription factors Nuclear Factor I (NFI) A and B initiate this developmental transition, but the contribution of a third NFI member, NFIX, remains unknown. Here, we reveal that ventricular zone progenitor cells within the spinal cord express NFIX after the onset of NFIA and NFIB expression, and after the gliogenic switch has occurred. Mice lacking NFIX exhibit normal neurogenesis within the spinal cord, and, while early astrocytic differentiation proceeds normally, aspects of terminal astrocytic differentiation are impaired. Finally, we report that, in the absence of Nfia or Nfib, there is a marked reduction in the spinal cord expression of NFIX, and that NFIB can transcriptionally activate Nfix expression in vitro. These data demonstrate that NFIX is part of the downstream transcriptional program through which NFIA and NFIB coordinate gliogenesis within the spinal cord. This hierarchical organisation of NFI protein expression and function during spinal cord gliogenesis reveals a previously unrecognised auto-regulatory mechanism within this gene family.


Assuntos
Fatores de Transcrição NFI/metabolismo , Medula Espinal/embriologia , Animais , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFI/genética , Neurogênese , Neuroglia/metabolismo , Neurônios/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...