Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20904, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38017054

RESUMO

Using two laboratory-scale conceptual fluid dynamic models of the mid-latitude atmospheric circulation we investigate the statistical properties of pointwise temperature signals obtained in long experiment runs. We explore how the average "equator-to-pole" temperature contrast influences the range and the jump distribution of extreme temperature fluctuations, the ratio of the frequencies of rapid cooling and warming events, and the persistence of "weather" in the set-ups. We find simple combinations of the control parameters-temperature gradient, rotation rate and geometric dimensions-which appear to determine certain scaling properties of these statistics, shedding light on the underlying dynamics of the Rossby wave-related elements of the mid-latitude weather variability.

2.
Sci Rep ; 11(1): 19951, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620925

RESUMO

Pronounced global cooling around the Eocene-Oligocene transition (EOT) was a pivotal event in Earth's climate history, controversially associated with the opening of the Drake Passage. Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Here we show, seemingly contradicting paleoclimate records, that in our experiments opening the pathway yields higher values of mean water surface temperature than the "closed" configuration. This mismatch points to the importance of the role ice albedo feedback plays in the investigated EOT-like transition, a component that is not captured in the laboratory model. Our conclusion is supported by numerical simulations performed in a global climate model (GCM) of intermediate complexity, where both "closed" and "open" configurations were explored, with and without active sea ice dynamics. The GCM results indicate that sea surface temperatures would change in the opposite direction following an opening event in the two sea ice dynamics settings, and the results are therefore consistent both with the laboratory experiment (slight warming after opening) and the paleoclimatic data (pronounced cooling after opening). It follows that in the hypothetical case of an initially ice-free Antarctica the continent could have become even warmer after the opening, a scenario not indicated by paleotemperature reconstructions.

3.
Sci Rep ; 7(1): 254, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325927

RESUMO

There is an ongoing debate in the literature about whether the present global warming is increasing local and global temperature variability. The central methodological issues of this debate relate to the proper treatment of normalised temperature anomalies and trends in the studied time series which may be difficult to separate from time-evolving fluctuations. Some argue that temperature variability is indeed increasing globally, whereas others conclude it is decreasing or remains practically unchanged. Meanwhile, a consensus appears to emerge that local variability in certain regions (e.g. Western Europe and North America) has indeed been increasing in the past 40 years. Here we investigate the nature of connections between external forcing and climate variability conceptually by using a laboratory-scale minimal model of mid-latitude atmospheric thermal convection subject to continuously decreasing 'equator-to-pole' temperature contrast ΔT, mimicking climate change. The analysis of temperature records from an ensemble of experimental runs ('realisations') all driven by identical time-dependent external forcing reveals that the collective variability of the ensemble and that of individual realisations may be markedly different - a property to be considered when interpreting climate records.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...