Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Organometallics ; 43(9): 1051-1056, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38756990

RESUMO

For nearly a century, chemists have explored how transition-metal complexes can affect the physical and chemical properties of linear conjugated polyenes and heteropolyenes. While much has been written about higher hapticity complexes (η4-η6), less is known about the chemistry of their η2 analogues. Herein, we describe a general method for synthesizing 5,6-η2-(1-azatriene) tungsten complexes via a 6π-azaelectrocyclic dihydropyridine ring-opening that is promoted by the π-basic nature of {WTp(NO)(PMe3)}. This study includes detailed spectroscopic and crystallographic data for the η2-dihydropyridine and η2-1-azatriene complexes, both of which were prepared as single regio- and stereoisomers.

2.
Sci Adv ; 10(7): eadl0885, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363845

RESUMO

Medicinal chemists use vast combinatorial molecular libraries to develop leads for new pharmaceuticals. The syntheses of these compounds typically rely on coupling molecular fragments through atoms with planar (sp2) geometry. These so-called flat molecules often lack the protein binding site specificity needed to be an effective drug. Here, we demonstrate a coupling strategy in which a cyclohexene is used as a linker to connect two diverse molecular fragments while forming two new tetrahedral (sp3) stereocenters. These connections are made with the aid of a tungsten complex that activates anisole toward an unusual double protonation, followed by sequential nucleophilic additions. As a result, either cis- or trans-disubstituted cyclohexenes can be prepared with a range of chemical diversity unparalleled by other dearomatization methods.

3.
ACS Cent Sci ; 9(9): 1775-1783, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780360

RESUMO

Due to its efficacy as a dopamine receptor agonist, methylphenidate (MPH) is of interest as a potential therapeutic for cocaine addiction. While numerous derivatives of MPH have been investigated for their potential medicinal value, functionalization of the piperidine ring has not been explored. The pyridine borane ligand in WTp(NO)(PMe3)(η2-pyBH3) is dearomatized by the metal and can be elaborated to the analogous η2-mesylpyridinium complex. Installing a methyl phenylacetate moiety at the C2' position via a Reformatsky reaction followed by a tandem protonation/nucleophilic addition sequence results in a library of erythro MPH analogues functionalized at the piperidyl C5' position. The functional group is added chemoselectively to C5', cis to the methyl phenylacetate. Repeating this procedure with an enantioenriched source of the tungsten reagent results in enantioenriched MPH derivatives. All identities of the newly reported compounds are supported by comprehensive 2D NMR and HRMS data or crystallographic data.

4.
J Am Chem Soc ; 144(21): 9489-9499, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593716

RESUMO

A novel process is described for the synthesis of di- and trisubstituted cyclohexenes from an arene. These compounds are prepared from three independent nucleophilic addition reactions to a phenyl sulfone (PhSO2R; R = Me, Ph, and NC4H8) dihapto-coordinated to the tungsten complex {WTp(NO)(PMe3)}(Tp = trispyrazolylborate). Such a coordination renders the dearomatized aryl ring susceptible to protonation at a carbon ortho to the sulfone group. The resulting arenium species readily reacts with the first nucleophile to form a dihapto-coordinated sulfonylated diene complex. This complex can again be protonated, and the subsequent nucleophilic addition forms a trisubstituted cyclohexene species bearing a sulfonyl group at an allylic position. Loss of the sulfinate anion forms a π-allyl species, to which a third nucleophile can be added. The trisubstituted cyclohexene can then be oxidatively decomplexed, either before or after substitution of the sulfonyl group. Nucleophiles employed include masked enolates, cyanide, amines, amides, and hydride, with all three additions occurring to the same face of the ring, anti to the metal. Of the 12 novel functionalized cyclohexenes prepared as examples of this methodology, nine compounds meet five independent criteria for evaluating drug likeliness. Structural assignments are supported with nine crystal structures, density functional theory studies, and full 2D NMR analysis.


Assuntos
Cicloexenos , Sulfonas , Amidas , Aminas , Ânions , Sulfonas/química
5.
Helv Chim Acta ; 104(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35125509

RESUMO

Reactions are described for complexes of the form WTp(NO)(PMe3)(η2-arene) and various amines, where the arene is benzene or benzene with an electron-withdrawing substituent (CF3, SO2Ph, SO2Me). The arene complex is first protonated to form an η2-arenium species, which then selectively adds the amine. The resulting η2-5-amino-1,3-cyclohexadiene complexes can then be subjected to the same sequence with a second nucleophile to form 3-aminocyclohexene complexes, where up to three stereocenters originate from the arene carbons. Alternatively, 1,3-cyclohexadiene complexes containing an ester group at the 5 position (also prepared from an arene) can be treated with acid followed by an amine to form trisubstituted 3-aminocyclohexenes. When the amine is primary, ring closure can occur to form a cis-fused bicyclic γ-lactam. Highly functionalized cyclohexenes can be liberated from the tungsten through oxidative decomplexation. The potential utility of this methodology is demonstrated in the synthesis of the alkaloid γ-lycorane. An enantioenriched synthesis of a lactam precursor to γ-lycorane is also described. This compound is prepared from an enantioenriched version of the tungsten benzene complex. Regio- and stereochemical assignments for the reported compounds are supported by detailed 2D-NMR analysis and 13 molecular structure determinations (SC-XRD).

6.
J Am Chem Soc ; 142(38): 16437-16454, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842728

RESUMO

Key steps in the functionalization of an unactivated arene often involve its dihaptocoordination by a transition metal followed by insertion into the C-H bond. However, rarely are the η2-arene and aryl hydride species in measurable equilibrium. In this study, the benzene/phenyl hydride equilibrium is explored for the {WTp(NO)(PBu3)} (Bu = n-butyl; Tp = trispyrazoylborate) system as a function of temperature, solvent, ancillary ligand, and arene substituent. Both face-flip and ring-walk isomerizations are identified through spin-saturation exchange measurements, which both appear to operate through scission of a C-H bond. The effect of either an electron-donating or electron-withdrawing substituent is to increase the stability of both arene and aryl hydride isomers. Crystal structures, electrochemical measurements, and extensive NMR data further support these findings. Static density functional theory calculations of the benzene-to-phenyl hydride landscape suggest a single linear sequence for this transformation involving a sigma complex and oxidative cleavage transition state. Static DFT calculations also identified an η2-coordinated benzene complex in which the arene is held more loosely than in the ground state, primarily through dispersion forces. Although a single reaction pathway was identified by static calculations, quasiclassical direct dynamics simulations identified a network of several reaction pathways connecting the η2-benzene and phenyl hydride isomers, due to the relatively flat energy landscape.

7.
Nature ; 581(7808): 288-293, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433618

RESUMO

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine1. Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules1. Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington's disease2, was recently approved by the United States' Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial1,3,4. The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound5, improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug6,7, these processes are often unselective and the stereoisotopic purity can be difficult to measure7,8. Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Assuntos
Benzeno/química , Técnicas de Química Sintética , Cicloexenos/química , Cicloexenos/síntese química , Deutério/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Bases de Dados de Compostos Químicos , Cinética , Estrutura Molecular , Estereoisomerismo , Tetrabenazina/análogos & derivados , Tetrabenazina/síntese química , Tetrabenazina/química , Tungstênio/química
8.
J Org Chem ; 85(12): 8245-8252, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32434325

RESUMO

Dihapto-coordinate 1,2-dihydropyridine complexes of the metal fragment {WTp(NO)(PMe3)} (Tp = tris(pyrazolyl)borate), derived from pyridine, are demonstrated to undergo protonation at C6 followed by regioselective amination at C5 with a variety of primary and secondary amines. The addition takes place stereoselectively anti to the metal center, producing exclusively cis-disubstituted products. The resulting 1,2,5,6-tetrahydropyridines can be successfully liberated by oxidation, providing a route to novel molecules of potential medicinal interest.


Assuntos
Aminas , Boratos , Aminação , Metais
9.
Organometallics ; 39(10): 1961-1975, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33456102

RESUMO

A method for the resolution of η 2-alkene-complex isomers of the type MoTp(NO)(DMAP)(η 2-alkene) and WTp(NO)(PMe3)(η 2-alkene) (where Tp = hydridotris(pyrazolyl)-borate and DMAP = 4-(dimethylamino)pyridine) has been explored. Alkene and polyene compounds form as a mixture of kinetically trapped isomers. For both types of complexes, it was found that addition of either a fluorinated alcohol or one-electron oxidant reduces the number of isomers in solution. Accelerated ligand exchange was also observed, although these reactions were accompanied by significant decomposition.

10.
Organometallics ; 39(13): 2493-2510, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-33456103

RESUMO

The exceptionally π-basic metal fragments {MoTp-(NO)(DMAP)} and {WTp(NO)(PMe3)} (Tp = tris(pyrazolyl)borate; DMAP = 4-(N,N-dimethylamino)pyridine) form thermally stable η 2-coordinated complexes with a variety of electron-deficient arenes. The tolerance of substituted arenes with fluorine-containing electron withdrawing groups (EWG; -F, -CF3, -SF5) is examined for both the molybdenum and tungsten systems. When the EWG contains a π bond (nitriles, aldehydes, ketones, ester), η 2 coordination occurs predominantly on the nonaromatic functional group. However, complexation of the tungsten complex with trimethyl orthobenzoate (PhC(OMe)3) followed by hydrolysis allows access to an η 2-coordinated arene with an ester substituent. In general, the tungsten system tolerates sulfur-based withdrawing groups well (e.g., PhSO2Ph, MeSO2Ph), and the integration of multiple electron-withdrawing groups on a benzene ring further enhances the π-back-bonding interaction between the metal and aromatic ligand. While the molybdenum system did not form stable η 2-arene complexes with the sulfones or ortho esters, it was capable of forming rare examples of stable η 2-coordinated arene complexes with a range of fluorinated benzenes (e.g., fluorobenzene, difluorobenzenes). In contrast to what has been observed for the tungsten system, these complexes formed without interference of C-H or C-F insertion.

11.
J Am Chem Soc ; 141(47): 18890-18899, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31684729

RESUMO

The preparation of the complex MoTp(NO)(DMAP)(4,5-η2-(2-trifluoromethyl)pyridine) (DMAP = 4-(dimethylamino)pyridine; Tp = tris(pyrazolyl)borate) is described. The CF3 substituent is found to preclude κ-N coordination, allowing for direct coordination without protection of the nitrogen. The dihapto-coordinate complex can be isolated as a single diastereomer, methylated, and reacted with a range of nucleophiles. Oxidative decomplexation affords the free dihydropyridines in good yield (75-90%). As a demonstration of synthetic utility, a series of novel bridgehead CF3-substituted isoquinuclidines was prepared from these decomplexed dihydropyridines.

12.
J Org Chem ; 84(10): 6094-6116, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30893999

RESUMO

The dihapto-coordination of benzene to the π-basic fragment {TpW(NO)(PMe3)} (Tp = hydridotris(pyrazolyl)-borate) enhances the basicity of the arene ligand to the point that it can be protonated with a mild Brønsted acid (diphenylammonium triflate; p Ka ∼ 1). The resulting η2-benzenium complex reacts with a wide range of nucleophiles including protected enolates, cyanide, amines, methoxide, and aromatic nucleophiles to form 5-substituted 3,4-η2-1,3-cyclohexadiene complexes in good yield (42-70%). These coordinated dienes were successfully taken through a second protonation and nucleophilic addition with a similar scope of nucleophiles (54-80%). The resulting cis-3,4- and cis-3,6-disubstituted η2-cyclohexene complexes were prepared with high regio- and stereocontrol, as governed by the asymmetric nature of π-allyl intermediates. In some cases, a diene linkage isomerization from 3,4-η2 to 1,2-η2 could be effected with a redox catalyst, and reactions of the latter species led to cis-3,5-disubstituted cyclohexene products exclusively. Oxidative decomplexation afforded the free cyclohexene products in moderate yield (37-68%). Additionally, when a single enantiomer of the chiral dearomatization agent was used, the elaborated cyclohexenes were able to be synthesized in enantioenriched forms (86-90% enantiomeric excess). Full characterization of 40 new compounds is provided that includes two-dimensional NMR, IR, electrochemical and in some cases crystallographic data.

13.
Dalton Trans ; 47(18): 6323-6332, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29623324

RESUMO

The large-scale synthesis of the scorpionate ligand Ttz (hydrotris(1,2,4-triazol-1-yl)borate) is reported as well as syntheses of Group VI complexes K[M(L)(CO)3] and M(L)(NO)(CO)2 (L = Ttz or Tp (hydrotris(pyrazol-1-yl)borate), M = Mo or W). The redox characteristics of the metal in these Ttz complexes are shown to be reversibly modulated by interactions between the exo-4-N lone pairs of the triazolyl rings and Brønsted or Lewis acids. The basicity of the scorpionate ligand in [M(Ttz)(CO)3]- is quantified (pKaH2O values range from 1.1 to 4.6) and found to be dependent on both the oxidation state and identity of the metal. In the presence of Brønsted acids, the observed redox behavior for the one-electron oxidation of the Group VI metal center is consistent with a proton-coupled electron transfer (PCET). Indeed, for both Mo and W derivatives, a one-electron oxidation decreases the pKa by ∼3.5 units.

14.
Chem Rev ; 117(22): 13721-13755, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29064228

RESUMO

This review covers publications ranging from 2005 to 2017 concerning the organic reactions of aromatic ligands η2-coordinated to tungsten or molybdenum and the use of these reactions in the synthesis of novel organic substances. An emphasis is placed on C-C bond-forming reactions using conventional building blocks of organic synthesis such as acetals, enolates, Michael acceptors, acylating reagents, and activated aromatics. Substrates activated by the metal include arenes, pyridines, pyrroles, pyrimidines, furans, and thiophenes. General reactivity patterns are elucidated, as well as stereochemical preferences. These trends are compared to those of osmium and rhenium forebears as well as to the reactivity patterns of other methods of stoichiometric transition-metal-based dearomatization (i.e., η6-arene complexes).

15.
J Am Chem Soc ; 139(33): 11401-11412, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28742965

RESUMO

The effects of an electron-withdrawing group on the organic chemistry of an η2-bound benzene ring are explored using the complex TpW(NO)(PMe3)(η2-PhCF3). This trifluorotoluene complex was found to undergo a highly regio- and stereoselective 1,2-addition reaction involving protonation of an ortho carbon followed by addition of a carbon nucleophile. The resulting 1,3-diene complexes can undergo a second protonation and nucleophilic addition with a range of nucleophiles including hydrides, amines, cyanide, and protected enolates. Interestingly, the addition of the second proton and nucleophile occurs in a 1,4-fashion, again with a high degree of regio- and stereocontrol. Oxidation of the metal allows for the isolation of highly substituted trifluoromethylcyclohexenes with as many as four stereocenters set by the metal. The ability to synthesize enantio-enriched organics was also demonstrated for a diene and a trisubstituted cyclohexene. Substitution from an enantio-enriched η2-dimethoxybenzene complex in neat trifluorotoluene yielded enantio-enriched trifluorotoluene complex, which was elaborated into cyclohexadienes and cyclohexenes with ee's ranging from 92 to 99%.

16.
J Am Chem Soc ; 139(33): 11392-11400, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28742967

RESUMO

The preparation of the complexes TpMo(NO)(DMAP)(η2-PhCF3) (5) and TpMo(NO)(DMAP)(η2-benzene) (3) is described. The CF3 group is found to stabilize the metal-arene bond strength in 5 by roughly 3 kcal/mol compared to that in 3, allowing the large-scale synthesis and isolation of the trifluorotoluene analogue (5, 37 g, 70%). When a benzene solution of 5 is allowed to stand, clean conversion to the benzene analogue 3 occurs, and this complex may be precipitated from solution upon the addition of pentane and isolated. The trifluorotoluene complex is shown to be a synthetic precursor to functionalized cyclohexadienes: In solution, it selectively protonates at the ortho position, and the resulting η2-arenium species undergoes reactions with nucleophiles at the adjacent meta carbon. Thus, reactions of 5, triflic acid, and either N-methylpyrrole or 1-methoxy-2-methyl-1-(trimethylsilyloxy)-1-propene result in 5-substituted-1,3-cyclohexadienes after removal of the metal.

17.
J Am Chem Soc ; 137(10): 3649-55, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25710752

RESUMO

A method is described for the resolution of the versatile dearomatization reagent TpW(NO)(PMe3)(η(2)-benzene), in which the 1,3-dimethoxybenzene (DMB) analogue of this complex is synthesized. In turn, the coordinated arene of TpW(NO)(PMe3)(DMB) is protonated with either D or L dibenzoyl tartaric acid (DBTH2) in a butanone/water or 2-pentanone/water solution. Sustained stirring of this mixture results in the selective precipitation of a single form of the diastereomeric salt [TpW(NO)(PMe3)(DMBH)](DBTH). After isolation, the salt can be redissolved, and the DMB ligand can be deprotonated and exchanged for benzene to produce the desired product TpW(NO)(PMe3)(η(2)-benzene) in either its R or S form. The absolute configuration of the tungsten stereocenter in TpW(NO)(PMe3)(η(2)-benzene) can be determined in either case by substituting the naturally occurring terpene (S)-ß-pinene for benzene and evaluating the 2D NMR spectrum of the corresponding ß-pinene complex.

18.
J Am Chem Soc ; 133(45): 18378-87, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21961580

RESUMO

A new method for the preparation of functionalized piperidines is described in which various dihydropyridine (DHP) complexes of {TpW(NO)(PMe(3))} that are derived from pyridine-borane undergo [4 + 2] cyclocondensation with enones, enals, nitrosobenzene, and several isocyanates to form [2.2.2] bicyclic species. In several cases the diazabicyclooctene products derived from DHP complexes and isocyanates can be further elaborated into novel syn-2,5-disubstituted and 2,3,6-trisubstituted piperidinamides.


Assuntos
Di-Hidropiridinas/química , Compostos Organometálicos/síntese química , Piperidinas/síntese química , Tungstênio/química , Ciclização , Estrutura Molecular , Compostos Organometálicos/química , Piperidinas/química , Estereoisomerismo
19.
J Am Chem Soc ; 132(48): 17282-95, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21077610

RESUMO

The N-acetylpyridinium complex of {TpW(NO)(PMe3)} undergoes regio- and stereoselective reactions with a broad range of common organic nucleophiles, providing a family of 1,2-dihydropyridine (DHP) complexes of the form TpW(NO)(PMe3)(3,4-η(2)-DHP). The present study explores the elaboration of these systems into novel piperidines. The addition of an acid to the DHP complexes generates highly asymmetric π-allyl complexes that in turn react with a second nucleophile at either C3 or C5. The subsequent oxidative decomplexation of these materials yields several piperidinamides with unconventional substitution patterns.

20.
J Am Chem Soc ; 130(50): 16844-5, 2008 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-19053427

RESUMO

Pyridine borane is combined with TpW(NO)(PMe(3))(eta(2)-benzene) to form a complex of the heterocycle, which upon treatment with acetone and acid yields the pyridinium complex [TpW(NO)(PMe(3))(eta(2)-pyH(+))]OTf. Deprotonation in the presence of acetic anhydride delivers the N-acetylpyridinium complex as a 10:1 mixture of coordination diastereomers. This acylpyridinium resists reaction with water or oxygen but readily reacts with acetone, pyrrole, indole, or acrolein and a weak base to stereoselectively form 1,2-dihydropyridine complexes. Treatment of the indole-derived analogue with CuBr(2) results in liberation of 3-(pyridin-2-yl)-1H-indole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...