Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(1): 111-118, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34787390

RESUMO

MXenes are two-dimensional metal carbides or nitrides that are currently proposed in many applications thanks to their unique attributes including high conductivity and accessible surface. Recently, a synthetic route was proposed to prepare MXenes from the molten salt etching of precursors allowing for the preparation of MXene (denoted as MS-MXenes, for molten salt MXene) with tuned surface termination groups, resulting in improved electrochemical properties. However, further delamination of as-prepared multilayer MS-MXenes still remains a major challenge. Here, we report on the successful exfoliation of MS-Ti3C2Tx via the intercalation of the organic molecule TBAOH (tetrabutylammonium hydroxide), followed by sonication to separate the layers. The treatment time could be adapted to tune the wetting behavior of the MS-Ti3C2Tx. As a result, a self-supported Cl-terminated MXene film could be prepared by filtration. Finally, MS-Ti3C2Tx used as a Li-ion battery anode could achieve a high specific capacity of 225 mAh g-1 at a 1C rate together with an excellent rate capability of 95 mAh g-1 at 167C. These results also show that tuning of the surface chemistry of MXene is of key importance to this field with the likely result being increased electrochemical performance.

2.
ACS Catal ; 10(23): 14245-14257, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33312750

RESUMO

In this study, Pt nanoparticles on zeolite/γ-Al2O3 composites (50/50 wt) were located either in the zeolite or on the γ-Al2O3 binder, hereby varying the average distance (intimacy) between zeolite acid sites and metal sites from "closest" to "nanoscale". The catalytic performance of these catalysts was compared to physical mixtures of zeolite and Pt/γ-Al2O3 powders, which provide a "microscale" distance between sites. Several beneficial effects on catalytic activity and selectivity for n-heptane hydroisomerization were observed when Pt nanoparticles are located on the γ-Al2O3 binder in nanoscale proximity with zeolite acid sites, as opposed to Pt nanoparticles located inside zeolite crystals. On ZSM-5-based catalysts, mostly monobranched isomers were produced, and the isomer selectivity of these catalysts was almost unaffected with an intimacy ranging from closest to microscale, which can be attributed to the high diffusional barriers of branched isomers within ZSM-5 micropores. For composite catalysts based on large-pore zeolites (zeolite Beta and zeolite Y), the activity and selectivity benefitted from the nanoscale intimacy with Pt, compared to both the closest and microscale intimacies. Intracrystalline gradients of heptenes as reaction intermediates are likely contributors to differences in activity and selectivity. This paper aims to provide insights into the influence of the metal-acid intimacy in bifunctional catalysts based on zeolites with different framework topologies.

3.
Angew Chem Int Ed Engl ; 59(9): 3592-3600, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31863705

RESUMO

Improving product selectivity by controlling the spatial organization of functional sites at the nanoscale is a critical challenge in bifunctional catalysis. We present a series of composite bifunctional catalysts consisting of one-dimensional zeolites (ZSM-22 and mordenite) and a γ-alumina binder, with platinum particles controllably deposited either on the alumina binder or inside the zeolite crystals. The hydroisomerization of n-heptane demonstrates that the catalysts with platinum particles on the binder, which separates platinum and acid sites at the nanoscale, leads to a higher yield of desired isomers than catalysts with platinum particles inside the zeolite crystals. Platinum particles within the zeolite crystals impose pronounced diffusion limitations on reaction intermediates, which leads to secondary cracking reactions, especially for catalysts with narrow micropores or large zeolite crystals. These findings extend the understanding of the "intimacy criterion" for the rational design of bifunctional catalysts for the conversion of low-molecular-weight reactants.

4.
Angew Chem Int Ed Engl ; 57(33): 10579-10583, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29893037

RESUMO

The Fischer-Tropsch synthesis (FTS) is a structure-sensitive exothermic reaction that enables catalytic transformation of syngas to high quality liquid fuels. Now, monolithic cobalt-based heterogeneous catalysts were elaborated through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst was tested for Fischer-Tropsch synthesis in a fixed-bed reactor, showing stability and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2 -Al2 O3 reference catalyst under the same conditions.

5.
ACS Nano ; 9(10): 9665-77, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26302309

RESUMO

Chemical methods offer the possibility to synthesize a large panel of nanostructures of various materials with promising properties. One of the main limitations to a mass market development of nanostructure based devices is the integration at a moderate cost of nano-objects into smart architectures. Here we develop a general approach by adapting the seed-mediated solution phase synthesis of nanocrystals in order to directly grow them on crystalline thin films. Using a Co precursor, single-crystalline Co nanowires are directly grown on metallic films and present different spatial orientations depending on the crystalline symmetry of the film used as a 2D seed for Co nucleation. Using films exposing 6-fold symmetry surfaces such as Pt(111), Au(111), and Co(0001), the Co heterogeneous nucleation and epitaxial growth leads to vertical nanowires self-organized in dense and large scale arrays. On the other hand, using films presenting 4-fold symmetry surfaces such as Pt(001) and Cu(001), the Co growth leads to slanted wires in discrete directions. The generality of the concept is demonstrated with the use of a Fe precursor which results in Fe nanostructures on metallic films with different growth orientations which depend on the 6-fold/4-fold symmetry of the film. This approach of solution epitaxial growth combines the advantages of chemistry in solution in producing shape-controlled and monodisperse metallic nanocrystals, and of seeded growth on an ad hoc metallic film that efficiently controls orientation through epitaxy. It opens attractive opportunities for the integration of nanocrystals in planar devices.

6.
Angew Chem Int Ed Engl ; 54(37): 10811-5, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26218322

RESUMO

Hybrid nanocomposites based on magnetic nanoparticles dispersed in liquid crystalline elastomers are fascinating emerging materials. Their expected strong magneto-elastic coupling may open new applications as actuators, magnetic switches, and for reversible storage of magnetic information. We report here the synthesis of a novel hybrid ferromagnetic liquid crystalline elastomer. In this material, highly anisotropic Co nanorods are aligned through a cross-linking process performed in the presence of an external magnetic field. We obtain a highly anisotropic magnetic material which exhibits remarkable magneto-elastic coupling. The nanorod alignment can be switched at will at room temperature by weak mechanical stress, leading to a change of more than 50 % of the remnant magnetization ratio and of the coercive field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...