Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 44(8): 2394-404, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24825529

RESUMO

Phospholipases catalyze the cleavage of membrane phospholipids into smaller bioactive molecules. The lysosomal phospholipase A2 (LPLA2 ) is specifically expressed in macrophages. LPLA2 gene deletion in mice causes lysosomal phospholipid accumulation in tissue macrophages leading to phospholipidosis. This phenotype becomes most prominent in alveolar macrophages where LPLA2 contributes to surfactant phospholipid degradation. High expression of LPLA2 in alveolar macrophages prompted us to investigate its role in host immunity against the respiratory pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis. Here we report that adaptive immune responses to M. tuberculosis were impaired in LPLA2 deficient mice. Upon aerosol infection with M. tuberculosis, LPLA2 deficient mice showed enhanced mycobacterial counts but less lung immunopathology and pulmonary inflammatory responses. Compromised T-cell priming in the lymph nodes was associated with impaired pulmonary T-cell recruitment and activation. Together with reduced Th1 type cytokine production, these results indicate that LPLA2 is indispensable for the induction of adaptive T-cell immunity to M. tuberculosis. Taken together, we identified an unexpected and novel function of a lysosomal phospholipid-degrading enzyme.


Assuntos
Imunidade Adaptativa/imunologia , Lisossomos/imunologia , Mycobacterium tuberculosis/imunologia , Fosfolipases A2/imunologia , Tuberculose Pulmonar/enzimologia , Tuberculose Pulmonar/imunologia , Animais , Citocinas/imunologia , Inflamação/imunologia , Pulmão/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Células Th1/imunologia , Fator de Necrose Tumoral alfa/imunologia
2.
Mol Cell Neurosci ; 56: 10-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23403072

RESUMO

Besides mediating most of the fast excitatory neurotransmission in the mammalian CNS, ionotropic glutamate receptors of the AMPA subtype (AMPARs) serve highly diverse functions in brain development controlling neuronal migration, synaptic growth, and synaptic maturation. Pioneering proteomic studies suggest that this functional diversity is met by a great molecular complexity in native AMPAR composition. Here, we have investigated the expression patterns of two recently identified AMPAR constituents, the cornichon homologues CNIH-2 and CNIH-3, and their assembly with the AMPAR core subunits GluA1-4 in developing rat brain. Unlike GluA1-4 expression, which is up-regulated during postnatal brain development, the two cornichon homologues show maximum mRNA and protein expression early after birth, which then decline towards adulthood. Despite rather reciprocal expression profiles, the overall ratio of CNIH-2/3 complexed with GluAs remains constant throughout development. Our data reveal an excess amount of AMPAR-free CNIH-2/3 early in development, which might serve the evolutionarily conserved role of cornichon as a cargo exporter. With progressing development, however, the amount of AMPAR-free CNIH-2/3 subsides, whereas the one being integrated into AMPAR complexes increases. Hence, the cornichon homologues CNIH-2/3 gain importance in their role as auxiliary subunits of native AMPARs during ontogeny, which reflects their functional evolution in phylogeny.


Assuntos
Receptores de AMPA/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de AMPA/genética
3.
Neuron ; 74(4): 621-33, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22632720

RESUMO

AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity. This diversity results from coassembly of the known AMPAR subunits, pore-forming GluA and three types of auxiliary proteins, with 21 additional constituents, mostly secreted proteins or transmembrane proteins of different classes. Their integration at distinct abundance and stability establishes the heteromultimeric architecture of native AMPAR complexes: a defined core with a variable periphery resulting in an apparent molecular mass between 0.6 and 1 MDa. The additional constituents change the gating properties of AMPARs and provide links to the protein dynamics fundamental for the complex role of AMPARs in formation and operation of glutamatergic synapses.


Assuntos
Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Encéfalo/metabolismo , Camundongos , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/genética , Proteômica , Ratos , Receptores de AMPA/genética , Sinapses/genética , Transmissão Sináptica/genética , Xenopus
4.
PLoS One ; 7(1): e30681, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292017

RESUMO

Fast excitatory neurotransmission in the mammalian central nervous system is mainly mediated by ionotropic glutamate receptors of the AMPA subtype (AMPARs). AMPARs are protein complexes of the pore-lining α-subunits GluA1-4 and auxiliary ß-subunits modulating their trafficking and gating. By a proteomic approach, two homologues of the cargo exporter cornichon, CNIH-2 and CNIH-3, have recently been identified as constituents of native AMPARs in mammalian brain. In heterologous reconstitution experiments, CNIH-2 promotes surface expression of GluAs and modulates their biophysical properties. However, its relevance in native AMPAR physiology remains controversial. Here, we have studied the role of CNIH-2 in GluA processing both in heterologous cells and primary rat neurons. Our data demonstrate that CNIH-2 serves an evolutionarily conserved role as a cargo exporter from the endoplasmic reticulum (ER). CNIH-2 cycles continuously between ER and Golgi complex to pick up cargo protein in the ER and then to mediate its preferential export in a coat protein complex (COP) II dependent manner. Interaction with GluA subunits breaks with this ancestral role of CNIH-2 confined to the early secretory pathway. While still taking advantage of being exported preferentially from the ER, GluAs recruit CNIH-2 to the cell surface. Thus, mammalian AMPARs commandeer CNIH-2 for use as a bona fide auxiliary subunit that is able to modify receptor signaling.


Assuntos
Evolução Molecular , Transporte Proteico/genética , Receptores de AMPA/genética , Receptores de AMPA/fisiologia , Processamento Alternativo , Animais , Células Cultivadas , Embrião de Mamíferos , Células HeLa , Humanos , Filogenia , Cultura Primária de Células , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Ratos , Receptores de AMPA/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Science ; 323(5919): 1313-9, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19265014

RESUMO

Glutamate receptors of the AMPA-subtype (AMPARs), together with the transmembrane AMPAR regulatory proteins (TARPs), mediate fast excitatory synaptic transmission in the mammalian brain. Here, we show by proteomic analysis that the majority of AMPARs in the rat brain are coassembled with two members of the cornichon family of transmembrane proteins, rather than with the TARPs. Coassembly with cornichon homologs 2 and 3 affects AMPARs in two ways: Cornichons increase surface expression of AMPARs, and they alter channel gating by markedly slowing deactivation and desensitization kinetics. These results demonstrate that cornichons are intrinsic auxiliary subunits of native AMPARs and provide previously unknown molecular determinants for glutamatergic neurotransmission in the central nervous system.


Assuntos
Encéfalo/metabolismo , Ativação do Canal Iônico , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Transmissão Sináptica , Animais , Encéfalo/citologia , Membrana Celular/metabolismo , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Técnicas de Patch-Clamp , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteômica , Ratos , Receptores de AMPA/química , Transdução de Sinais , Sinapses/metabolismo , Xenopus
6.
Cardiovasc Res ; 79(1): 52-60, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18326556

RESUMO

AIMS: Cellular excitability is not only determined by the type but also by the number of ion channels in the plasma membrane. Recent evidence indicates that cell surface expression of cardiac pacemaker channels might be controlled beyond the level of biosynthesis by regulating their surface transport. However, neither the underlying trafficking pathways nor their molecular control have yet been investigated. METHODS AND RESULTS: We have studied endocytic trafficking of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels expressed as fusions with green fluorescent protein or tagged with an extracellular haemagglutinin epitope in opossum kidney cells, dissociated rat hippocampal neurons, and ventricular cardiomyocytes. After being internalized from the plasma membrane, HCN2 and HCN4 are sorted to the Rab11-positive endocytic recycling compartment (ERC). From there, they are transported back to the cell surface depending on active phospholipase D2 (PLD2). The peptide hormone angiotensin II, which is upregulated in a number of cardiac pathologies and a known activator of PLD2, stimulates ERC trafficking of HCN4 channels. It significantly increases HCN surface expression independent of their biosynthesis. CONCLUSION: Recycling endosomes serve as an intracellular storage compartment for the cardiac pacemaker channels HCN2 and HCN4. They are not only crucial for maintaining a homeostatic surface expression but also supply channels for rapid adaptation of their surface expression in response to extracellular stimuli.


Assuntos
Membrana Celular/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Canais Iônicos/metabolismo , Canais de Potássio/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Hipocampo/citologia , Hipocampo/metabolismo , Homeostase/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Rim/citologia , Rim/metabolismo , Mesotelina , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Gambás , Fosfolipase D/metabolismo , Proteína Quinase C/metabolismo , Ratos
7.
J Gen Physiol ; 128(1): 103-18, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16801384

RESUMO

The interaction of palytoxin with the Na,K-ATPase was studied by the electrochromic styryl dye RH421, which monitors the amount of ions in the membrane domain of the pump. The toxin affected the pump function in the state P-E2, independently of the type of phosphorylation (ATP or inorganic phosphate). The palytoxin-induced modification of the protein consisted of two steps: toxin binding and a subsequent conformational change into a transmembrane ion channel. At 20 degrees C, the rate-limiting reaction had a forward rate constant of 10(5) M(-1)s(-1) and a backward rate constant of about 10(-3) s(-1). In the palytoxin-modified state, the binding affinity for Na+ and H+ was increased and reached values between those obtained in the E1 and P-E2 conformation under physiological conditions. Even under saturating palytoxin concentrations, the ATPase activity was not completely inhibited. In the Na/K mode, approximately 50% of the enzyme remained active in the average, and in the Na-only mode 25%. The experimental findings indicate that an additional exit from the inhibited state exists. An obvious reaction pathway is a slow dephosphorylation of the palytoxin-inhibited state with a time constant of approximately 100 s. Analysis of the effect of blockers of the extracellular and cytoplasmic access channels, TPA+ and Br2-Titu3+, respectively, showed that both access channels are part of the ion pathway in the palytoxin-modified protein. All experiments can be explained by an extension of the Post-Albers cycle, in which three additional states were added that branch off in the P-E2 state and lead to states in which the open-channel conformation is introduced and returns into the pump cycle in the occluded E2 state. The previously suggested molecular model for the channel state of the Na,K-ATPase as a conformation in which both gates between binding sites and aqueous phases are simultaneously in their open state is supported by this study.


Assuntos
Acrilamidas/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Catálise/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Venenos de Cnidários , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Isotiurônio/análogos & derivados , Isotiurônio/farmacologia , Medula Renal/enzimologia , Cinética , Modelos Químicos , Fosforilação/efeitos dos fármacos , Compostos de Piridínio/química , Compostos de Amônio Quaternário/farmacologia , Coelhos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Espectrometria de Fluorescência , Estirenos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...