Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 367(13)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589217

RESUMO

Autotrophic microorganisms catalyze the entry of dissolved inorganic carbon (DIC; = CO2 + HCO3- + CO32-) into the biological component of the global carbon cycle, despite dramatic differences in DIC abundance and composition in their sometimes extreme environments. "Cyanobacteria" are known to have CO2 concentrating mechanisms (CCMs) to facilitate growth under low CO2 conditions. These CCMs consist of carboxysomes, containing enzymes ribulose 1,5-bisphosphate oxygenase and carbonic anhydrase, partnered to DIC transporters. CCMs and their DIC transporters have been studied in a handful of other prokaryotes, but it was not known how common CCMs were beyond "Cyanobacteria". Since it had previously been noted that genes encoding potential transporters were found neighboring carboxysome loci, α-carboxysome loci were gathered from bacterial genomes, and potential transporter genes neighboring these loci are described here. Members of transporter families whose members all transport DIC (CHC, MDT and Sbt) were common in these neighborhoods, as were members of the SulP transporter family, many of which transport DIC. 109 of 115 taxa with carboxysome loci have some form of DIC transporter encoded in their genomes, suggesting that CCMs consisting of carboxysomes and DIC transporters are widespread not only among "Cyanobacteria", but also among members of "Proteobacteria" and "Actinobacteria".


Assuntos
Bactérias/genética , Dióxido de Carbono/metabolismo , Genes Bacterianos/genética , Variação Genética , Proteínas de Membrana Transportadoras/genética , Bactérias/metabolismo , Transporte Biológico/genética
2.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446552

RESUMO

Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.IMPORTANCE Autotrophic organisms take up and fix DIC, introducing carbon into the biological portion of the global carbon cycle. The mechanisms for DIC uptake and fixation by autotrophic Bacteria and Archaea are likely to be diverse but have been well characterized only for "Cyanobacteria" Based on genome sequences, members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus have a variety of mechanisms for DIC uptake and fixation. We verified that most of these organisms are capable of growing under low-DIC conditions, when they upregulate carboxysome loci and transporter genes collocated with these loci on their chromosomes. When these genes, which fall into four evolutionarily independent families of transporters, are expressed in E. coli, DIC transport is detected. This expansion in known DIC transporters across four families, from organisms from a variety of environments, provides insight into the ecophysiology of autotrophs, as well as a toolkit for engineering microorganisms for carbon-neutral biochemistries of industrial importance.


Assuntos
Dióxido de Carbono/metabolismo , Piscirickettsiaceae/isolamento & purificação , Piscirickettsiaceae/metabolismo , Sulfetos/metabolismo , Processos Autotróficos , Ciclo do Carbono , Dióxido de Carbono/análise , Ecossistema , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética
3.
Environ Microbiol ; 20(8): 2686-2708, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29521452

RESUMO

Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms' use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.


Assuntos
Crescimento Quimioautotrófico , Genoma Bacteriano , Piscirickettsiaceae/genética , Ecossistema , Hidrogenase/genética , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo
4.
J Bacteriol ; 199(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115547

RESUMO

Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira.


Assuntos
Dióxido de Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fontes Hidrotermais/microbiologia , Piscirickettsiaceae/metabolismo , Carbono/metabolismo , Mutação , Filogenia , Piscirickettsiaceae/genética , Proteoma
5.
Biol Bull ; 220(2): 118-27, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21551448

RESUMO

Marine invertebrates hosting chemosynthetic bacterial symbionts are known from multiple phyla and represent remarkable diversity in form and function. The deep-sea hydrothermal vent limpet Lepetodrilus fucensis from the Juan de Fuca Ridge complex hosts a gill symbiosis of particular interest because it displays a morphology unique among molluscs: filamentous bacteria are found partially embedded in the host's gill epithelium and extend into the fluids circulating across the lamellae. Our objective was to investigate the phylogenetic affiliation of the limpet's primary gill symbionts for comparison with previously characterized bacteria. Comparative 16S rRNA sequence analysis identified one γ- and three ε-Proteobacteria as candidate symbionts. We used fluorescence in situ hybridization (FISH) to test which of these four candidates occur with the limpet's symbiotic gill bacteria. The γ-proteobacterial probes consistently hybridized to the entire area where symbiotic bacteria were found, but fluorescence signal from the ε-proteobacterial probes was generally absent. Amplification of the γ-proteobacterial 16S rRNA gene using a specific forward primer yielded a sequence similar to that of limpets collected from different ridge sections. In total, direct amplification or FISH identified a single γ-proteobacterial lineage from the gills of 23 specimens from vents separated by a distance up to about 200 km and collected over the course of 2 years, suggesting a highly specific and widespread symbiosis. Thus, we report the first filamentous γ-proteobacterial gill symbiont hosted by a mollusc.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Gastrópodes/microbiologia , Filogenia , Animais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Brânquias/microbiologia , Fontes Termais , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
6.
Appl Environ Microbiol ; 74(12): 3895-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18408062

RESUMO

Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Helmintos/microbiologia , Fontes Termais/microbiologia , Água do Mar/microbiologia , Simbiose , Animais , Fenômenos Fisiológicos Bacterianos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Helmintos/fisiologia , Hibridização in Situ Fluorescente , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
PLoS Biol ; 4(12): e383, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17105352

RESUMO

Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.


Assuntos
Genoma Bacteriano , Piscirickettsiaceae/genética , Aderência Bacteriana/genética , Dióxido de Carbono/metabolismo , Quimiotaxia/genética , Dados de Sequência Molecular , Fosfatos/metabolismo , Piscirickettsiaceae/metabolismo , Prófagos/genética , Alinhamento de Sequência , Transdução de Sinais
8.
Arch Microbiol ; 182(1): 18-29, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15316720

RESUMO

Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), was cloned and expressed in Escherichia coli. The recombinant RubisCO had a high specific activity, approximately 3 micromol min(-1) mg protein (-1), and a KCO2 of 40.3 microM. Based on sequence identity and phylogenetic analyses, these genes encode a form IA RubisCO, both subunits of which are closely related to those of the symbiont of the deep-sea hydrothermal vent gastropod Alviniconcha hessleri and the photosynthetic bacterium Allochromatium vinosum. In the cbb gene cluster of the S. velum symbiont, the cbbLS genes were followed by cbbQ and cbbO, which are found in some but not all cbb gene clusters and whose products are implicated in enhancing RubisCO activity post-translationally. cbbQ shares sequence similarity with nirQ and norQ, found in denitrification clusters of Pseudomonas stutzeri and Paracoccus denitrificans. The 3' region of cbbO from the S. velum symbiont, like that of the three other known cbbO genes, shares similarity to the 3' region of norD in the denitrification cluster. This is the first study to explore the cbb gene structure for a chemoautotrophic endosymbiont, which is critical both as an initial step in evaluating cbb operon structure in chemoautotrophic endosymbionts and in understanding the patterns and forces governing RubisCO evolution and physiology.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Moluscos/microbiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Simbiose , Animais , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Família Multigênica , Ribulose-Bifosfato Carboxilase/genética
9.
Curr Microbiol ; 48(6): 438-40, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15170240

RESUMO

Broad variation among anoxygenic reaction centers makes it essential to consider a wide variety when considering the origins of photosynthesis. The photosynthetic core antenna domain in the gene pshA from Heliophilum fasciatum was sequenced doubling the number of core sequences available from heliobacteria. The sequence shares a pattern of hydrophobicity and histidine residues with the core antenna domain of pshA from Heliobacillus mobilis. Sequence identity between the two pshA sequences was 68%, indicating heliobacterial reaction centers show similar diversity to photosystem I throughout cyanobacteria and plastids. Thus, the diversity of anoxygenic phototrophic reaction centers may be greater than previously thought.


Assuntos
Bactérias Gram-Positivas/genética , Complexos de Proteínas Captadores de Luz/genética , Fototropismo/genética , Sequência de Aminoácidos , Sequência Conservada , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Bactérias Gram-Positivas/química , Histidina/genética , Interações Hidrofóbicas e Hidrofílicas , Complexos de Proteínas Captadores de Luz/química , Dados de Sequência Molecular , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Porfirinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...