Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451914

RESUMO

The purpose of the study was to describe and compare the pharmacokinetics of five commercial edible marijuana products, determine the influence of body composition on pharmacokinetics, and, in light of epidemiology suggesting marijuana may offer diabetes protection, explore the influence of edible marijuana on glucose tolerance. Seven regular users of marijuana self-administered five edible products in a randomized crossover design; each product contained 10 mg of delta-9-tetrahydrocannabinol (THC). Thirty minutes following marijuana ingestion, participants imbibed a 75 g glucose beverage. Time-to-peak plasma THC concentration ranged between 35 and 90 min; maximal plasma THC concentration (Cmax) ranged between 3.2 and 5.5 ng/mL. Differences between products in plasma THC concentration during the first 20-30 min were detected (p = 0.019). Relations were identified between body composition and pharmacokinetic parameters for some products; however, none of these body composition characteristics were consistently related to pharmacokinetics across all five of the products. Edible marijuana had no effect on oral glucose tolerance compared with a marijuana-free control (Matsuda Index; p > 0.395). Commercially available edible marijuana products evoke different plasma THC concentrations shortly after ingestion, but do not appear to influence acute glucose regulation. These data may allow recreational marijuana users to make informed decisions pertaining to rates of edible marijuana ingestion and avoid overdose.

2.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418866

RESUMO

Data supporting the physiological effects of cannabidiol (CBD) ingestion in humans are conflicting. Differences between CBD preparations and bioavailability may contribute to these discrepancies. Further, an influence of body composition on CBD bioavailability is feasible, but currently undocumented. The aims of this study were to: (1) compare the pharmacokinetics of five oral CBD preparations over 4 h; (2) examine the relationship between body composition and CBD pharmacokinetics; and, (3) explore the influence of CBD on heart rate variability. In total, five preparations of CBD, standardized to 30 mg, were orally administered to 15 healthy men and women (21-62 years) in a randomized, crossover design. Prior to and 60 min following CBD ingestion, heart rate variability was determined. Body composition was assessed using dual energy X-ray absorptiometry. Peak circulating CBD concentration, time to peak concentration, and area under the curve was superior in a preparation comprising 5% CBD concentration liquid. Fat free mass was a significant predictor (R 2 = 0.365, p = 0.017) of time to peak concentration for this preparation. Several heart rate variability parameters, including peak frequency of the high frequency band, were favorably, but modestly modified following CBD ingestion. These data confirm an influence of CBD preparation and body composition on CBD bioavailability, and suggest that acute CBD ingestion may have a modest influence on autonomic regulation of heart rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...