Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 12(24): 2094-2098, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29210523

RESUMO

Neosporosis caused by the apicomplexan parasite Neospora caninum is an economically important disease that induces abortion in dairy and beef cattle. There are no vaccines or drugs available on the market for control or treatment of the disease in bovines. The peroxide artemisinin and its derivatives used clinically for treatment of malaria are active against N. caninum and other apicomplexan parasites. We have now evaluated the activities of the readily accessible and chemically robust 11-azaartemisinin 5 and selected N-sulfonyl derivatives prepared as described in the accompanying paper against N. caninum tachyzoites grown in infected human foreskin fibroblasts. Azaartemisinin elicited an IC50 value of 150 nm, and the 2',5'-dichloro-3'-thienylsulfonyl-11-azaartemisinin 17 was found to be the most active, with an IC50 value of 40 nm. Comparison with normal human fetal lung fibroblasts HFLF WI-38 revealed relatively benign cytotoxicity. The compounds were also screened in vitro against TK-10 (renal), UACC-62 (melanoma) and MCF-7 (breast) cancer cell lines; overall, in line with activities against HFLF cells, most compounds in the series were found to be inactive.


Assuntos
Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Artemisininas/farmacologia , Neospora/efeitos dos fármacos , Sulfonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Artemisininas/síntese química , Artemisininas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/citologia , Humanos , Masculino , Conformação Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química
2.
ChemMedChem ; 12(24): 2086-2093, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29219249

RESUMO

Dihydroartemisinin (DHA), either used in its own right or as the active drug generated in vivo from the other artemisinins in current clinical use-artemether and artesunate-induces quiescence in ring-stage parasites of Plasmodium falciparum (Pf). This induction of quiescence is linked to artemisinin resistance. Thus, we have turned to structurally disparate artemisinins that are incapable of providing DHA on metabolism. Accordingly, 11-azaartemisinin 5 and selected N-sulfonyl derivatives were screened against intraerythrocytic asexual stages of drug-sensitive Pf NF54 and drug-resistant K1 and W2 parasites. Most displayed appreciable activities against all three strains, with IC50 values <10.5 nm. The p-trifluoromethylbenzenesulfonyl-11-azaartemisinin derivative 11 [(4'-trifluoromethyl)benzenesulfonylazaartemisinin] was the most active, with IC50 values between 2 and 3 nm. The compounds were screened against Pf NF54 early and transmissible late intraerythrocytic-stage gametocytes using luciferase and parasite lactate dehydrogenase (pLDH) assays. The 2'-thienylsulfonyl derivative 16 (2'-thiophenesulfonylazaartemisinin) was notably active against late-stage (IV-V) gametocytes with an IC50 value of 8.7 nm. All compounds were relatively nontoxic to human fetal lung WI-38 fibroblasts, showing selectivity indices of >2000 toward asexual parasites. Overall, the readily accessible 11-azaartemisinin 5 and the sulfonyl derivatives 11 and 16 represent potential candidates for further development, in particular for transmission blocking of artemisinin-resistant parasites.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sulfonas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Artemisininas/síntese química , Artemisininas/química , Relação Dose-Resposta a Droga , Fibroblastos , Prepúcio do Pênis , Humanos , Masculino , Conformação Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química
3.
Bioorg Med Chem Lett ; 26(24): 5951-5955, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836398

RESUMO

Based on a previous report that a series of 8-(phenoxymethyl)-xanthines may be promising leads for the design of A1 adenosine receptor antagonists, selected novel and known 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine and 1,3,7-trimethyl-8-(phenoxymethyl)-xanthine analogs were synthesized and evaluated for their A1 and A2A adenosine receptor affinity. Generally, the study compounds exhibited affinity for both the A1 and A2A adenosine receptors. Replacement of the 1,3-dimethyl-substition with a 1,3-diethyl-substition pattern increased A1 and A2A binding affinity. Overall it was found that para-substitution on the phenoxymethyl side-chain of the 1,3-diethyl-xanthines decreased A1 affinity except for the 4-Br analog (4f) exhibiting the best A1 affinity in the submicromolar range. On the other hand A2A affinity for the 1,3-diethyl-xanthines were increased with para-substitution and the 4-OCH3 (4b) analog showed the best A2A affinity with a Ki value of 237nM. The 1,3-diethyl-substituted analogs (4a, and 4f) behaved as A1 adenosine receptor antagonists in GTP shift assays performed with rat whole brain membranes expressing A1 adenosine receptors. This study concludes that para-substituted 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine analogs represent novel A1 and A2A adenosine receptor antagonists that are appropriate for the design of therapies for neurodegenerative disorders such as Parkinson's and Alzheimer's disease.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Descoberta de Drogas , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Xantina/farmacologia , Antagonistas do Receptor A1 de Adenosina/síntese química , Antagonistas do Receptor A1 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Animais , Relação Dose-Resposta a Droga , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Xantina/síntese química , Xantina/química
4.
Curr Med Chem ; 22(31): 3607-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219389

RESUMO

The current treatment regimens for uncomplicated malaria comprise an artemisinin in combination with another drug (ACT). However, the recent emergence of resistance to ACTs in South East Asia dramatically emphasizes the need for new artemisinins. The current artemisinins have been in use since the late 1970s and have relatively poor thermal, chemical and metabolic stabilities - all are metabolized or hydrolyzed in vivo to dihydroartemisinin (DHA) that itself undergoes facile decomposition in vivo. The current artemisinins possess neurotoxicity as demonstrated in animal models, an issue that mandates increased vigilance in view of trends to use of protracted treatment regimens involving sequential administration of different ACTs against the resistant disease. As artemisinins induce the most rapid reduction in parasitaemia of any drug, common sense dictates that any new artemisinin derivative, selected on the bases of more robust chemical and thermal stability, metabolic stability with respect to the generation of DHA in vivo, and relatively benign neurotoxicity should be used in any new ACT whose components are rationally chosen in order to counter resistant malaria and inhibit transmission. 11-Azaartemisinin and its N-substituted derivatives attract because of overall ease of preparation from artemisinin. Some derivatives also possess notable thermal stabilities and although metabolic pathways of the derivatives are as yet unknown, none can provide DHA. The azaartemisinins synthesized over the past 20 years are critically discussed on the basis of their synthetic accessibility and biological activities with the view to assessing suitability to serve as new artemisinin derivatives for treatment of malaria.


Assuntos
Antimaláricos/síntese química , Malária/tratamento farmacológico , Administração Oral , Animais , Antimaláricos/química , Antimaláricos/uso terapêutico , Artemisininas/síntese química , Artemisininas/química , Artemisininas/uso terapêutico , Desenho de Fármacos , Humanos , Camundongos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...