Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(17): 7829-7844, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37057395

RESUMO

For high capacitance multilayer ceramic capacitors, high dielectric constant and lead-free ceramic nanoparticles are highly desired. However, as the particle size decreases to a few tens of nanometers, their dielectric constant significantly decreases, and the underlying mechanism has yet to be fully elucidated. Herein, we report a systematic investigation into the crystal structure-dielectric property relationship of combustion-made BaTiO3 (BTO) nanocrystals. When the nanocrystal size was 100 nm and below, a metastable paraelectric cubic phase was found in the as-received BTO (denoted as arBTO) nanocrystals based on an X-ray diffraction (XRD) study. A stable ferroelectric tetragonal phase was present when the nanocrystal size was above 200 nm. Notably, the cubic arBTO (particle size ≤100 nm) exhibited tetragonal fluctuations as revealed by Raman spectroscopy, whereas the tetragonal arBTO (particle size ≥200 nm) contained ∼10% cubic fraction according to the Rietveld fitting of the XRD profiles. Thermal annealing of the multi-grain tetragonal arBTO at 950 °C yielded single crystals of annealed BTO (denoted as anBTO), whose dielectric constants were higher than those of arBTO. However, the single crystalline anBTO prevented the formation of 90° domains; therefore, they exhibited a low dielectric constant of ∼300. Although X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy could not identify the exact structural defects, our study revealed that surface and bulk defects formed during synthesis affect the final crystal structures and thus the dielectric properties of BTO nanocrystals with different sizes. The understanding obtained from this study will help us design high dielectric constant perovskite nanocrystals for next-generation multilayer ceramic capacitor applications.

2.
Proc Natl Acad Sci U S A ; 118(25)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161256

RESUMO

Perovskite oxides (ABO3) have been widely recognized as a class of promising noble-metal-free electrocatalysts due to their unique compositional flexibility and structural stability. Surprisingly, investigation into their size-dependent electrocatalytic properties, in particular barium titanate (BaTiO3), has been comparatively few and limited in scope. Herein, we report the scrutiny of size- and dopant-dependent oxygen reduction reaction (ORR) activities of an array of judiciously designed pristine BaTiO3 and doped BaTiO3 (i.e., La- and Co-doped) nanoparticles (NPs). Specifically, a robust nanoreactor strategy, based on amphiphilic star-like diblock copolymers, is employed to synthesize a set of hydrophobic polymer-ligated uniform BaTiO3 NPs of different sizes (≤20 nm) and controlled compositions. Quite intriguingly, the ORR activities are found to progressively decrease with the increasing size of BaTiO3 NPs. Notably, La- and Co-doped BaTiO3 NPs display markedly improved ORR performance over the pristine counterpart. This can be attributed to the reduced limiting barrier imposed by the formation of -OOH species during ORR due to enhanced adsorption energy of intermediates and the possibly increased conductivity as a result of change in the electronic states as revealed by our density functional theory-based first-principles calculations. Going beyond BaTiO3 NPs, a variety of other ABO3 NPs with tunable sizes and compositions may be readily accessible by exploiting our amphiphilic star-like diblock copolymer nanoreactor strategy. They could in turn provide a unique platform for both fundamental and practical studies on a suite of physical properties (dielectric, piezoelectric, electrostrictive, catalytic, etc.) contingent upon their dimensions and compositions.

3.
Angew Chem Int Ed Engl ; 60(13): 7259-7266, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33393190

RESUMO

Approaches to achieve stable perovskite nanocrystals (PNCs) of interest, in particular those with large structural anisotropy, through protective coating of the inorganic shell at a single-nanocrystal (NC) level are comparatively few and limited in scope. Reported here is a robust amphiphilic-diblock-copolymer-enabled strategy for crafting highly-stable anisotropic CsPbBr3 nanosheets (NSs) by in situ formation of a uniform inorganic shell (1st shielding) that is intimately ligated with hydrophobic polymers (2nd shielding). The dual-protected NSs display an array of remarkable stabilities (i.e., thermal, photostability, moisture, polar solvent, aliphatic amine, etc.) and find application in white-light-emitting diodes. In principle, by anchoring other multidentate amphiphilic polymer ligands on the surface of PNCs, followed by templated-growth of shell materials of interest, a rich variety of dual-shelled, multifunctional PNCs with markedly improved stabilities can be created for use in optics, optoelectronics, and sensory devices.

4.
Sci Adv ; 5(11): eaax4424, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31819900

RESUMO

The past few years have witnessed rapid advances in the synthesis of high-quality perovskite nanocrystals (PNCs). However, despite the impressive developments, the stability of PNCs remains a substantial challenge. The ability to reliably improve stability of PNCs while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic applications. Here, we report an unconventional strategy for crafting dual-shelled PNCs (i.e., polymer-ligated perovskite/SiO2 core/shell NCs) with exquisite control over dimensions, surface chemistry, and stabilities. In stark contrast to conventional methods, our strategy relies on capitalizing on judiciously designed star-like copolymers as nanoreactors to render the growth of core/shell NCs with controlled yet tunable perovskite core diameter, SiO2 shell thickness, and surface chemistry. Consequently, the resulting polymer-tethered perovskite/SiO2 core/shell NCs display concurrently a stellar set of substantially improved stabilities (i.e., colloidal stability, chemical composition stability, photostability, water stability), while having appealing solution processability, which are unattainable by conventional methods.

5.
Angew Chem Int Ed Engl ; 58(34): 11910-11917, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31197938

RESUMO

Thermoresponsive nanoparticles (NPs) represent an important hybrid material comprising functional NPs with temperature-sensitive polymer ligands. Strikingly, significant discrepancies in optical and catalytic properties of thermoresponsive noble-metal NPs have been reported, and have yet to be unraveled. Reported herein is the crafting of Au NPs, intimately and permanently ligated by thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), in situ using a starlike block copolymer nanoreactor as model system to resolve the paradox noted above. As temperature rises, plasmonic absorption of PNIPAM-capped Au NPs red-shifts with increased intensity in the absence of free linear PNIPAM, whereas a greater red-shift with decreased intensity occurs in the presence of deliberately introduced linear PNIPAM. Remarkably, the absence or addition of free linear PNIPAM also accounts for non-monotonic or switchable on/off catalytic performance, respectively, of PNIPAM-capped Au NPs.

6.
Chem Soc Rev ; 48(4): 1194-1228, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30663742

RESUMO

The current trend in the miniaturization of electronic devices has driven the investigation into many nanostructured materials. The ferroelectric material barium titanate (BaTiO3) has garnered considerable attention over the past decade owing to its excellent dielectric and ferroelectric properties. This has led to significant progress in synthetic techniques that yield high quality BaTiO3 nanocrystals (NCs) with well-defined morphologies (e.g., nanoparticles, nanorods, nanocubes and nanowires) and controlled crystal phases (e.g., cubic, tetragonal and multi-phase). The ability to produce nanoscale BaTiO3 with controlled properties enables theoretical and experimental studies on the intriguing yet complex dielectric properties of individual BaTiO3 NCs as well as BaTiO3/polymer nanocomposites. Compared with polymer-free individual BaTiO3 NCs, BaTiO3/polymer nanocomposites possess several advantages. The polymeric component enables simple solution processibility, high breakdown strength and light weight for device scalability. The BaTiO3 component enables a high dielectric constant. In this review, we highlight recent advances in the synthesis of high-quality BaTiO3 NCs via a variety of chemical approaches including organometallic, solvothermal/hydrothermal, templating, molten salt, and sol-gel methods. We also summarize the dielectric and ferroelectric properties of individual BaTiO3 NCs and devices based on BaTiO3 NCs via theoretical modeling and experimental piezoresponse force microscopy (PFM) studies. In addition, viable synthetic strategies for novel BaTiO3/polymer nanocomposites and their structure-composition-performance relationship are discussed. Lastly, a perspective on the future direction of nanostructured BaTiO3-based materials is presented.

7.
J Am Chem Soc ; 139(37): 12956-12967, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28845985

RESUMO

The ability to tailor the size and shape of nanoparticles (NPs) enables the investigation into the correlation between these parameters and optical, optoelectronic, electrical, magnetic, and catalytic properties. Despite several effective approaches available to synthesize NPs with a hollow interior, it remains challenging to have a general strategy for creating a wide diversity of high-quality hollow NPs with different dimensions and compositions on demand. Herein, we report on a general and robust strategy to in situ crafting of monodisperse hairy hollow noble metal NPs by capitalizing on rationally designed amphiphilic star-like triblock copolymers as nanoreactors. The intermediate blocks of star-like triblock copolymers can associate with metal precursors via strong interaction (i.e., direct coordination or electrostatic interaction), followed by reduction to yield hollow noble metal NPs. Notably, the outer blocks of star-like triblock copolymers function as ligands that intimately and permanently passivate the surface of hollow noble metal NPs (i.e., forming hairy permanently ligated hollow NPs with superior solubility in nonpolar solvents). More importantly, the diameter of the hollow interior and the thickness of the shell of NPs can be readily controlled. As such, the dimension-dependent optical properties of hollow NPs are scrutinized by combining experimental studies and theoretical modeling. The dye encapsulation/release studies indicated that hollow NPs may be utilized as attractive guest molecule nanocarriers. As the diversity of precursors are amenable to this star-like triblock copolymer nanoreactor strategy, it can conceptually be extended to produce a rich variety of hairy hollow NPs with different dimensions and functionalities for applications in catalysis, water purification, optical devices, lightweight fillers, and energy conversion and storage.

8.
Angew Chem Int Ed Engl ; 56(42): 12946-12951, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28719065

RESUMO

Despite impressive recent advances in the synthesis of lead chalcogenide solid nanoparticles, there are no examples of lead chalcogenide hollow nanoparticles (HNPs) with controlled diameter and shell thickness as current synthetic approaches for HNPs have inherent limitations associated with their complexity, inability to precisely control the dimensions, and limited possibilities with regard to applicable materials. Herein, we report on an unconventional strategy for crafting uniform lead chalcogenide (PbS and PbTe) HNPs with tailorable size, surface chemistry, and near-IR absorption. Amphiphilic star-like triblock copolymers [polystyrene-block-poly(acrylic acid)-block-polystyrene and polystyrene-block-poly(acrylic acid)-block-poly(3,4-ethylenedioxythiophene)] were rationally synthesized and exploited as nanoreactors for the formation of uniform PbS and PbTe HNPs. Compared to their solid counterparts, the near-IR absorption of the HNPs is blue-shifted owing to the hollow interior. This strategy can be readily extended to other types of intriguing low-band-gap HNPs for diverse applications.

9.
Tumour Biol ; 35(5): 4875-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464249

RESUMO

Developing an effective drug for treating human glioblastoma multiform (GBM) has been investigated persistently. A pure compound butylidenephthalide (BP), isolated from Angelica sinensis, has been shown the activities to arrest the growth and initiate apoptosis of GBM in our previous reports. In this study, we further demonstrated that BP treatment accelerates the cell senescence in a dose-dependent manner in vitro and in vivo. S-phase kinase-associated protein 2 (Skp2), a proto-oncogene, is generally upregulated in cancer. We found that it was downregulated in BP-treated GBM cells. The downregulation of Skp2 is parallel with increasing p16 and p21 expression which causes G0/G1 arrest and tumor cell senescence. We also found that restoring the Skp2 protein level by exogenous overexpression prevents the BP-induced cell senescence. Therefore, the linkage between cell senescence and Skp2 expression is strengthened. Promoter binding analysis further detailed that the BP-mediated SP1 reduction might involve in the Skp2 downregulation. In summary, these results emphasize that BP-triggered senescence in GBM cells is highly associated with its control on Skp2 regulation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Anidridos Ftálicos/farmacologia , Proteínas Quinases Associadas a Fase S/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Regulação para Baixo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Proto-Oncogene Mas , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo
10.
Phys Chem Chem Phys ; 15(27): 11275-86, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23728083

RESUMO

This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.


Assuntos
Biopolímeros/química , Materiais Revestidos Biocompatíveis/química , Ouro/química , Química Verde , Ácido Hialurônico/química , Nanopartículas Metálicas/química , Catálise , Análise Espectral Raman , Propriedades de Superfície
11.
Small ; 9(18): 3169-82, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23650082

RESUMO

Photodegradation of organic pollutants in aqueous solution is a promising method for environmental purification. Photocatalysts capable of promoting this reaction are often composed of noble metal nanoparticles deposited on a semiconductor. Unfortunately, the separation of these semiconductor-metal nanopowders from the treated water is very difficult and energy consumptive, so their usefulness in practical applications is limited. Here, a precisely controlled synthesis of a large-scale and highly efficient photocatalyst composed of monolayered Au nanoparticles (AuNPs) chemically bound to vertically aligned ZnO nanorod arrays (ZNA) through a bifunctional surface molecular linker is demonstrated. Thioctic acid with sufficient steric stabilization is used as a molecular linker. High density unaggregated AuNPs bonding on entire surfaces of ZNA are successfully prepared on a conductive film/substrate, allowing easy recovery and reuse of the photocatalysts. Surprisingly, the ZNA-AuNPs heterostructures exhibit a photodegradation rate 8.1 times higher than that recorded for the bare ZNA under UV irradiation. High density AuNPs, dispersed perfectly on the ZNA surfaces, significantly improve the separation of the photogenerated electron-hole pairs, enlarge the reaction space, and consequently enhance the photocatalytic property for degradation of chemical pollutants. Photoelectron, photoluminescence and photoconductive measurements confirm the discussion on the charge carrier separation and photocatalytic experimental data. The demonstrated higher photodegradation rates demonstrated indicate that the ZNA-AuNPs heterostructures are candidates for the next-generation photocatalysts, replacing the conventional slurry photocatalysts.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Óxido de Zinco/química , Catálise , Fotoquímica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...