Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653236

RESUMO

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Análise Espacial , Transcriptoma/genética , Microambiente Tumoral , Proteômica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Nat Metab ; 5(11): 1858-1869, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857731

RESUMO

The intestinal epithelium is replaced every few days1. Enterocytes are shed into the gut lumen predominantly from the tips of villi2,3 and have been believed to rapidly die upon their dissociation from the tissue4,5. However, technical limitations prohibited studying the cellular states and fates of shed intestinal cells. Here we show that shed epithelial cells remain viable and upregulate distinct anti-microbial programmes upon shedding, using bulk and single-cell RNA sequencing of male mouse intestinal faecal washes. We further identify abundant shedding of immune cells, which is elevated in mice with dextran sulfate sodium-induced colitis. We find that faecal host transcriptomics reflect changes in the intestinal tissue following perturbations. Our study suggests potential functions of shed cells in the intestinal lumen and demonstrates that host cell transcriptomes in intestinal washes can be used to probe tissue states.


Assuntos
Colite , Masculino , Camundongos , Animais , Colite/induzido quimicamente , Mucosa Intestinal , Células Epiteliais
3.
Nat Metab ; 3(12): 1680-1693, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931081

RESUMO

The use of transcriptomes as reliable proxies for cellular proteomes is controversial. In the small intestine, enterocytes operate for 4 days as they migrate along villi, which are highly graded microenvironments. Spatial transcriptomics have demonstrated profound zonation in enterocyte gene expression, but how this variability translates to protein content is unclear. Here we show that enterocyte proteins and messenger RNAs along the villus axis are zonated, yet often spatially discordant. Using spatial sorting with zonated surface markers, together with a Bayesian approach to infer protein translation and degradation rates from the combined spatial profiles, we find that, while many genes exhibit proteins zonated toward the villus tip, mRNA is zonated toward the villus bottom. Finally, we demonstrate that space-independent protein synthesis delays can explain many of the mRNA-protein discordances. Our work provides a proteomic spatial blueprint of the intestinal epithelium, highlighting the importance of protein measurements for inferring cell states in tissues that operate outside of steady state.


Assuntos
Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Proteoma , Transcriptoma , Animais , Enterócitos/metabolismo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Estabilidade Proteica , Proteômica/métodos , Estabilidade de RNA
4.
Nat Commun ; 11(1): 1936, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321913

RESUMO

The intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis. These include villus tip telocytes (VTTs) that express Lgr5, a gene previously considered a specific crypt epithelial stem cell marker. VTTs are elongated cells that line the villus tip epithelium and signal through Bmp morphogens and the non-canonical Wnt5a ligand. Their ablation is associated with perturbed zonation of enterocyte genes induced at the villus tip. Our study provides a spatially-resolved cell atlas of the small intestinal stroma and exposes Lgr5+ villus tip telocytes as regulators of the epithelial spatial expression programs along the villus axis.


Assuntos
Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Enterócitos/citologia , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Células Estromais/metabolismo , Proteína Wnt-5a/metabolismo
5.
Nature ; 572(7770): 474-480, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31330533

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.


Assuntos
Esclerose Lateral Amiotrófica/microbiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Niacinamida/metabolismo , Akkermansia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Disbiose , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , Niacinamida/biossíntese , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Taxa de Sobrevida , Simbiose/efeitos dos fármacos , Verrucomicrobia/metabolismo , Verrucomicrobia/fisiologia
6.
Cell ; 175(4): 1156-1167.e15, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270040

RESUMO

The intestinal epithelium is a highly structured tissue composed of repeating crypt-villus units. Enterocytes perform the diverse tasks of absorbing a wide range of nutrients while protecting the body from the harsh bacterium-rich environment. It is unknown whether these tasks are spatially zonated along the villus axis. Here, we extracted a large panel of landmark genes characterized by transcriptomics of laser capture microdissected villus segments and utilized it for single-cell spatial reconstruction, uncovering broad zonation of enterocyte function along the villus. We found that enterocytes at villus bottoms express an anti-bacterial gene program in a microbiome-dependent manner. They next shift to sequential expression of carbohydrates, peptides, and fat absorption machineries in distinct villus compartments. Finally, they induce a Cd73 immune-modulatory program at the villus tips. Our approach can be used to uncover zonation patterns in other organs when prior knowledge of landmark genes is lacking.


Assuntos
Enterócitos/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Movimento Celular , Enterócitos/citologia , Enterócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...