Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(16): 4496-4510, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37259883

RESUMO

Understanding the density-dependent processes that drive population demography in a changing world is critical in ecology, yet measuring performance-density relationships in long-lived mammalian species demands long-term data, limiting scientists' ability to observe such mechanisms. We tested performance-density relationships for an opportunistic omnivore, grizzly bears (Ursus arctos, Linnaeus, 1758) in the Greater Yellowstone Ecosystem, with estimates of body composition (lean body mass and percent body fat) serving as indicators of individual performance over two decades (2000-2020) during which time pronounced environmental changes have occurred. Several high-calorie foods for grizzly bears have mostly declined in recent decades (e.g., whitebark pine [Pinus albicaulis, Engelm, 1863]), while increasing human impacts from recreation, development, and long-term shifts in temperatures and precipitation are altering the ecosystem. We hypothesized that individual lean body mass declines as population density increases (H1), and that this effect would be more pronounced among growing individuals (H2). We also hypothesized that omnivory helps grizzly bears buffer energy intake from changing foods, with body fat levels being independent from population density and environmental changes (H3). Our analyses showed that individual lean body mass was negatively related to population density, particularly among growing-age females, supporting H1 and partially H2. In contrast, population density or sex had little effect on body fat levels and rate of accumulation, indicating that sufficient food resources were available on the landscape to accommodate successful use of shifting food sources, supporting H3. Our results offer important insights into ecological feedback mechanisms driving individual performances within a population undergoing demographic and ecosystem-level changes. However, synergistic effects of continued climate change and increased human impacts could lead to more extreme changes in food availability and affect observed population resilience mechanisms. Our findings underscore the importance of long-term studies in protected areas when investigating complex ecological relationships in an increasingly anthropogenic world.


Assuntos
Ecossistema , Ursidae , Animais , Feminino , Humanos , Composição Corporal , Alimentos , Densidade Demográfica
2.
Conserv Physiol ; 9(1): coab029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345432

RESUMO

Meat, fruit, seeds and other high-energy bear foods are often highly localized and briefly available and understanding which factors influence bear consumption of these foods is a common focus of bear conservation and ecology. However, the most common bear foods, graminoids and forbs, are more widespread but of lower quality. We poorly understand how herbage consumption impacts bear physiology, such as endocrine system function that regulates homeostasis and stress responses. Here, we described bear diets with a novel approach, measuring the concentration of chlorophyll in bear scats (faecal chlorophyll) to index the proportion of the recent diet that was composed of leaves from graminoids and forbs. We measured faecal chlorophyll and faecal cortisol in 351 grizzly (Ursus arctos, n = 255) and black bear (Ursus americanus, n = 96) scats from Yellowstone National Park in 2008-2009. We compared models of faecal chlorophyll and faecal cortisol concentrations considering the effects of spatial, dietary, scat and bear-specific factors including species. Faecal chlorophyll levels were the strongest predictor of faecal cortisol in a manner that suggested an endocrine response to a low-energy diet. Both compounds were highest during the spring and early summer months, overlapping the breeding season when higher energy foods were less available. Effects of scat composition, scat weathering, bear age, bear sex, species and other factors that have previously been shown to influence faecal cortisol in bears were not important unless faecal chlorophyll was excluded from models. The top models of faecal chlorophyll suggested grazing was primarily influenced by spatial attributes, with greater grazing closer to recreational trails, implying that elevated cortisol with grazing could be a response to anthropogenic activity. Our results confirm that higher stress hormone concentrations correspond with lower quality diets in bears, particularly grazing, and that faecal chlorophyll shows promise as a metric for studying grazing behaviour and its consequences.

3.
J Exp Biol ; 224(Pt 6)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785520

RESUMO

Animal movements are major determinants of energy expenditure and ultimately the cost-benefit of landscape use. Thus, we sought to understand those costs and how grizzly bears (Ursus arctos) move in mountainous landscapes. We trained captive grizzly bears to walk on a horizontal treadmill and up and down 10% and 20% slopes. The cost of moving upslope increased linearly with speed and slope angle, and this was more costly than moving horizontally. The cost of downslope travel at slower speeds was greater than the cost of traveling horizontally but appeared to decrease at higher speeds. The most efficient walking speed that minimized cost per unit distance was 1.19±0.11 m s-1 However, grizzly bears fitted with GPS collars in the Greater Yellowstone Ecosystem moved at an average velocity of 0.61±0.28 m s-1 and preferred to travel on near-horizontal slopes at twice their occurrence. When traveling uphill or downhill, grizzly bears chose paths across all slopes that were ∼54% less steep and costly than the maximum available slope. The net costs (J kg-1 m-1) of moving horizontally and uphill were the same for grizzly bears, humans and digitigrade carnivores, but those costs were 46% higher than movement costs for ungulates. These movement costs and characteristics of landscape use determined using captive and wild grizzly bears were used to understand the strategies that grizzly bears use for preying on large ungulates and the similarities in travel between people and grizzly bears that might affect the risk of encountering each other on shared landscapes.


Assuntos
Ursidae , Animais , Ecossistema , Metabolismo Energético , Humanos , Movimento , Caminhada
4.
Ecol Evol ; 8(17): 8726-8735, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30271540

RESUMO

Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed to CDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state-space models to infer the temporal dynamics of CDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed to CDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short. CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within the GYE carnivore community or is periodically reintroduced from distant regions with larger host populations.

5.
PLoS One ; 11(5): e0153702, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27192407

RESUMO

When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004-2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46-47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in this region.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta , Comportamento Alimentar , Ursidae , Animais , Feminino , Geografia , Masculino , Wyoming
6.
Oecologia ; 181(3): 695-708, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971522

RESUMO

Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.


Assuntos
Sistemas de Informação Geográfica , Ursidae , Animais , Ecossistema , Comportamento Predatório , Telemetria
7.
Mol Ecol ; 24(22): 5507-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26510936

RESUMO

Effective population size (N(e)) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different N(e) estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (N(b)) and N(e) during 1982-2007. We also used multisample methods to estimate variance (N(eV)) and inbreeding N(e) (N(eI)). Single-sample estimates revealed positive trajectories, with over a fourfold increase in N(e) (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. N(eV) (240-319) and N(eI) (256) were comparable with the harmonic mean single-sample N(e) (213) over the time period. Reanalysing historical data, we found N(eV) increased from ≈80 in the 1910s-1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (N(e) /N(c)) was stable and high (0.42-0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of N(e) can complement demographic-based monitoring of N(c) and vital rates, providing a valuable tool for wildlife managers.


Assuntos
Variação Genética , Genética Populacional , Densidade Demográfica , Ursidae/genética , Animais , Conservação dos Recursos Naturais , Ecossistema , Frequência do Gene , Genótipo , Endogamia , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA , Wyoming
8.
Ecol Evol ; 4(10): 2004-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24963393

RESUMO

When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

9.
PLoS One ; 9(2): e88160, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520354

RESUMO

Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.


Assuntos
Ecossistema , Comportamento de Retorno ao Território Vital/fisiologia , Pinus/fisiologia , Ursidae/fisiologia , Animais , Feminino , Modelos Lineares , Masculino , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...