Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 95(2): 112-122, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245781

RESUMO

BACKGROUND: The posterior intralaminar complex of the thalamus (PIL) is a multimodal nucleus that has been implicated in maternal behaviors and conspecific social behaviors in male and female rodents. Glutamatergic neurons are a major component of the PIL; however, their specific activity and role during social interactions has not yet been assessed. METHODS: We used immunohistochemistry for the immediate early gene c-fos as a proxy for neuronal activity in the PIL of mice exposed to a novel social stimulus, a novel object stimulus, or no stimulus. We then used fiber photometry to record neural activity of glutamatergic neurons in the PIL in real time during social and nonsocial interactions. Finally, we used inhibitory DREADDs (designer receptors exclusively activated by designer drugs) in glutamatergic PIL neurons and tested social preference and social habituation-dishabituation. RESULTS: We observed significantly more c-fos-positive cells in the PIL of mice exposed to a social stimulus versus an object stimulus or no stimulus. Neural activity of PIL glutamatergic neurons was increased when male and female mice were engaged in social interaction with a same-sex juvenile or opposite-sex adult, but not a toy mouse. Neural activity was positively correlated with social investigation bout length and negatively correlated with chronological order of bouts. Social preference was unaffected by inhibition; however, inhibiting activity of glutamatergic neurons in the PIL delayed the time that it took for female mice to form social habituation. CONCLUSIONS: Together, these findings suggest that glutamatergic PIL neurons respond to social stimuli in both male and female mice and may regulate perceptual encoding of social information to facilitate recognition of social stimuli.


Assuntos
Interação Social , Tálamo , Animais , Camundongos , Feminino , Masculino , Neurônios/fisiologia , Comportamento Social
2.
Mol Psychiatry ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052983

RESUMO

Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.

3.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106179

RESUMO

Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.

4.
J Neurosci ; 43(45): 7538-7546, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940587

RESUMO

The supramammillary nucleus (SuM) is a small region in the ventromedial posterior hypothalamus. The SuM has been relatively understudied with much of the prior focus being on its connection with septo-hippocampal circuitry. Thus, most studies conducted until the 21st century examined its role in hippocampal processes, such as theta rhythm and learning/memory. In recent years, the SuM has been "rediscovered" as a crucial hub for several behavioral and cognitive processes, including reward-seeking, exploration, and social memory. Additionally, it has been shown to play significant roles in hippocampal plasticity and adult neurogenesis. This review highlights findings from recent studies using cutting-edge systems neuroscience tools that have shed light on these fascinating roles for the SuM.


Assuntos
Hipotálamo Posterior , Motivação , Hipocampo , Ritmo Teta , Cognição
5.
Neuron ; 111(6): 755-756, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924758

RESUMO

The oxytocin receptor has long been considered critical for social bonding and parenting in prairie voles. In this issue of Neuron, Berendzen et al.1 show that oxytocin receptor-null prairie voles display normal bonding and parental behaviors, thus challenging the prevailing understanding of the receptor's role in these behaviors.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Receptores de Ocitocina/genética , Ocitocina/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pradaria , Arvicolinae/genética , Comportamento Social
6.
BMC Biol ; 20(1): 159, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820848

RESUMO

BACKGROUND: Various mammalian species emit ultrasonic vocalizations (USVs), which reflect their emotional state and mediate social interactions. USVs are usually analyzed by manual or semi-automated methodologies that categorize discrete USVs according to their structure in the frequency-time domains. This laborious analysis hinders the effective use of USVs as a readout for high-throughput analysis of behavioral changes in animals. RESULTS: Here we present a novel automated open-source tool that utilizes a different approach towards USV analysis, termed TrackUSF. To validate TrackUSF, we analyzed calls from different animal species, namely mice, rats, and bats, recorded in various settings and compared the results with a manual analysis by a trained observer. We found that TrackUSF detected the majority of USVs, with less than 1% of false-positive detections. We then employed TrackUSF to analyze social vocalizations in Shank3-deficient rats, a rat model of autism, and revealed that these vocalizations exhibit a spectrum of deviations from appetitive calls towards aversive calls. CONCLUSIONS: TrackUSF is a simple and easy-to-use system that may be used for a high-throughput comparison of ultrasonic vocalizations between groups of animals of any kind in any setting, with no prior assumptions.


Assuntos
Transtorno Autístico , Ultrassom , Animais , Emoções , Mamíferos , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Ratos , Vocalização Animal
7.
Genes Brain Behav ; 21(5): e12803, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285132

RESUMO

Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence-based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Camundongos
8.
J Neuroendocrinol ; 33(12): e13061, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786775

RESUMO

Oxytocin (OXT) neurons of the hypothalamus are at the center of several physiological functions, including milk ejection, uterus contraction, and maternal and social behavior. In lactating females, OXT neurons show a pattern of burst firing and inter-neuron synchronization during suckling that leads to pulsatile release of surges of OXT into the bloodstream to stimulate milk ejection. This pattern of firing and population synchronization may be facilitated in part by hypothalamic glutamatergic circuits, as has been observed in vitro using brain slices obtained from male rats and neonates. However, it remains unknown how hypothalamic glutamatergic circuits influence OXT cell activity outside the context of lactation. In this review, we summarize the in vivo and in vitro studies that describe the synchronized burst firing pattern of OXT neurons and the implication of hypothalamic glutamate in this pattern of firing. We also make note of the few studies that have traced glutamatergic afferents to the hypothalamic paraventricular and supraoptic nuclei. Finally, we discuss the genetic findings implicating several glutamatergic genes in neurodevelopmental disorders, including autism spectrum disorder, thus underscoring the need for future studies to investigate the impact of these mutations on hypothalamic glutamatergic circuits and the OXT system.


Assuntos
Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Neurônios/fisiologia , Ocitocina/metabolismo , Animais , Comunicação Celular/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Neurônios/metabolismo , Ratos
9.
Sci Rep ; 11(1): 22541, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795340

RESUMO

Hypothalamic oxytocin (OXT) and arginine-vasopressin (AVP) neurons have been at the center of several physiological and behavioral studies. Advances in viral vector biology and the development of transgenic rodent models have allowed for targeted gene expression to study the functions of specific cell populations and brain circuits. In this study, we compared the efficiency of various adeno-associated viral vectors in these cell populations and demonstrated that none of the widely used promoters were, on their own, effective at driving expression of a down-stream fluorescent protein in OXT or AVP neurons. As anticipated, the OXT promoter could efficiently drive gene expression in OXT neurons and this efficiency is solely attributed to the promoter and not the viral serotype. We also report that a dual virus approach using an OXT promoter driven Cre recombinase significantly improved the efficiency of viral transduction in OXT neurons. Finally, we demonstrate the utility of the OXT promoter for conducting functional studies on OXT neurons by using an OXT specific viral system to record neural activity of OXT neurons in lactating female rats across time. We conclude that extreme caution is needed when employing non-neuron-specific viral approaches/promoters to study neural populations within the paraventricular nucleus of the hypothalamus.


Assuntos
Lactação/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Ocitocina/metabolismo , Regiões Promotoras Genéticas , Animais , Animais Geneticamente Modificados , Arginina Vasopressina/metabolismo , Eletrofisiologia , Feminino , Hipotálamo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Autism Res ; 14(9): 1837-1842, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34313403

RESUMO

Mutations and deletions in the SHANK3 gene cause the major neurodevelopmental features of Phelan-McDermid syndrome (PMS), which is characterized by intellectual disability, autism spectrum disorder, and sensory hyporeactivity. SHANK3 encodes a key structural component of excitatory synapses important for synaptogenesis. Clinical assessments and limited brain imaging studies of patients with PMS have uncovered regional volume reductions and white matter thinning. While these impairments have been replicated ex vivo in pups of a rat model, brain structure has not been assessed in rats in vivo or in adults. We assessed the brain structure of heterozygous and homozygous adult Shank3-deficient male rats in comparison to wild-type littermates with magnetic resonance imaging using both anatomical assessments and diffusion tensor imaging (DTI). Shank3-deficient rats showed a reduction in overall brain size and the absolute volume of the neocortex, piriform cortex, thalamus, forebrain, inferior and superior colliculi, internal capsule, and anterior commissure. The superior colliculus was decreased in relative volume. DTI revealed that axial diffusion and fractional anisotropy were reduced in the external capsule and mean diffusion was increased in the fornix, suggesting that restriction of diffusion perpendicular to the axis of the axonal fibers was impaired in these white matter tracts. Therefore, Shank3-deficient rats replicate the reduced brain volume and altered white matter phenotypes present in PMS. Our results indicate that the loss of a glutamatergic synaptic protein, Shank3, has structural consequences at the level of the whole brain. The brain regions that were altered represent potential cross-species structural biomarkers that warrant further study.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Transtornos Cromossômicos , Proteínas do Tecido Nervoso , Substância Branca , Animais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Masculino , Proteínas do Tecido Nervoso/genética , Ratos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
11.
Mol Autism ; 11(1): 89, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203459

RESUMO

BACKGROUND: Deletion or mutations of SHANK3 lead to Phelan-McDermid syndrome and monogenic forms of autism spectrum disorder (ASD). SHANK3 encodes its eponymous scaffolding protein at excitatory glutamatergic synapses. Altered morphology of dendrites and spines in the hippocampus, cerebellum, and striatum have been associated with behavioral impairments in Shank3-deficient animal models. Given the attentional deficit in these animals, our study explored whether deficiency of Shank3 in a rat model alters neuron morphology and synaptic ultrastructure in the medial prefrontal cortex (mPFC). METHODS: We assessed dendrite and spine morphology and spine density in mPFC layer III neurons in Shank3-homozygous knockout (Shank3-KO), heterozygous (Shank3-Het), and wild-type (WT) rats. We used electron microscopy to determine the density of asymmetric synapses in mPFC layer III excitatory neurons in these rats. We measured postsynaptic density (PSD) length, PSD area, and head diameter (HD) of spines at these synapses. RESULTS: Basal dendritic morphology was similar among the three genotypes. Spine density and morphology were comparable, but more thin and mushroom spines had larger head volumes in Shank3-Het compared to WT and Shank3-KO. All three groups had comparable synapse density and PSD length. Spine HD of total and non-perforated synapses in Shank3-Het rats, but not Shank3-KO rats, was significantly larger than in WT rats. The total and non-perforated PSD area was significantly larger in Shank3-Het rats compared to Shank3-KO rats. These findings represent preliminary evidence for synaptic ultrastructural alterations in the mPFC of rats that lack one copy of Shank3 and mimic the heterozygous loss of SHANK3 in Phelan-McDermid syndrome. LIMITATIONS: The Shank3 deletion in the rat model we used does not affect all isoforms of the protein and would only model the effect of mutations resulting in loss of the N-terminus of the protein. Given the higher prevalence of ASD in males, the ultrastructural study focused only on synaptic structure in male Shank3-deficient rats. CONCLUSIONS: We observed increased HD and PSD area in Shank3-Het rats. These observations suggest the occurrence of altered synaptic ultrastructure in this animal model, further pointing to a key role of defective expression of the Shank3 protein in ASD and Phelan-McDermid syndrome.


Assuntos
Proteínas do Tecido Nervoso/deficiência , Córtex Pré-Frontal/patologia , Sinapses/ultraestrutura , Animais , Espinhas Dendríticas/ultraestrutura , Feminino , Heterozigoto , Masculino , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Ratos
12.
Transl Psychiatry ; 10(1): 280, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788572

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is caused by mutations in the FMR1 gene. Neuroanatomical alterations have been reported in both male and female individuals with FXS, yet the morphological underpinnings of these alterations have not been elucidated. In the current study, we found structural changes in both male and female rats that model FXS, some of which are similarly impaired in both sexes, including the superior colliculus and periaqueductal gray, and others that show sex-specific changes. The splenium of the corpus callosum, for example, was only impaired in males. We also found reduced axonal caliber in the splenium, offering a mechanism for its structural changes. Furthermore, we found that overall, male rats have higher brain-wide diffusion than female rats. Our results provide insight into which brain regions are vulnerable to a loss of Fmr1 expression and reveal an impairment at the level of the axon that could cause structural changes in white matter regions.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Axônios , Encéfalo/metabolismo , Corpo Caloso , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Masculino , Ratos
13.
Neuron ; 107(4): 644-655.e7, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32544386

RESUMO

Complex behavioral phenotyping techniques are becoming more prevalent in the field of behavioral neuroscience, and thus methods for manipulating neuronal activity must be adapted to fit into such paradigms. Here, we present a head-mounted, magnetically activated device for wireless optogenetic manipulation that is compact, simple to construct, and suitable for use in group-living mice in an enriched semi-natural arena over several days. Using this device, we demonstrate that repeated activation of oxytocin neurons in male mice can have different effects on pro-social and agonistic behaviors, depending on the social context. Our findings support the social salience hypothesis of oxytocin and emphasize the importance of the environment in the study of social neuromodulators. Our wireless optogenetic device can be easily adapted for use in a variety of behavioral paradigms, which are normally hindered by tethered light delivery or a limited environment.


Assuntos
Comportamento Agonístico/fisiologia , Comportamento Animal/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Ocitocina/metabolismo , Comportamento Social , Tecnologia sem Fio , Animais , Camundongos , Neurônios/metabolismo
14.
Cereb Cortex ; 29(5): 2228-2244, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877790

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene. It is a leading monogenic cause of autism spectrum disorder and inherited intellectual disability and is often comorbid with attention deficits. Most FXS cases are due to an expansion of CGG repeats leading to suppressed expression of fragile X mental retardation protein (FMRP), an RNA-binding protein involved in mRNA metabolism. We found that the previously published Fmr1 knockout rat model of FXS expresses an Fmr1 transcript with an in-frame deletion of exon 8, which encodes for the K-homology (KH) RNA-binding domain, KH1. Notably, 3 pathogenic missense mutations associated with FXS lie in the KH domains. We observed that the deletion of exon 8 in rats leads to attention deficits and to alterations in transcriptional profiles within the medial prefrontal cortex (mPFC), which map to 2 weighted gene coexpression network modules. These modules are conserved in human frontal cortex and enriched for known FMRP targets. Hub genes in these modules represent potential therapeutic targets for FXS. Taken together, these findings indicate that attentional testing might be a reliable cross-species tool for investigating FXS and identify dysregulated conserved gene networks in a relevant brain region.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Regulação da Expressão Gênica , Córtex Pré-Frontal/metabolismo , Animais , Atenção/fisiologia , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Redes Reguladoras de Genes , Masculino , Ratos Sprague-Dawley , Ratos Transgênicos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29970997

RESUMO

The neuropeptide oxytocin (OXT) is a crucial mediator of parturition and milk ejection and a major modulator of various social behaviors, including social recognition, aggression and parenting. In the past decade, there has been significant excitement around the possible use of OXT to treat behavioral deficits in neurodevelopmental disorders, including autism spectrum disorder (ASD). Yet, despite the fast move to clinical trials with OXT, little attention has been paid to the possibility that the OXT system in the brain is perturbed in these disorders and to what extent such perturbations may contribute to social behavior deficits. Large-scale whole-exome sequencing studies in subjects with ASD, along with biochemical and electrophysiological studies in animal models of the disorder, indicate several risk genes that play an essential role in brain synapses, suggesting that deficits in synaptic activity and plasticity underlie the pathophysiology in a considerable portion of these cases. OXT has been repeatedly shown, both in vitro and in vivo, to modify synaptic properties and plasticity and to modulate neural activity in circuits that regulate social behavior. Together, these findings led us to hypothesize that failure of the OXT system during early development, as a direct or indirect consequence of genetic mutations, may impact social behavior by altering synaptic activity and plasticity. In this article, we review the evidence that support our hypothesis.

16.
Autism Res ; 11(4): 587-601, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377611

RESUMO

Mutations in the SHANK3 gene have been discovered in autism spectrum disorder (ASD), and the intellectual disability, Phelan-McDermid Syndrome. This study leveraged a new rat model of Shank3 deficiency to assess complex behavioral phenomena, unique to rats, which display a richer social behavior repertoire than mice. Uniquely detectable emissions of ultrasonic vocalizations (USV) in rats serve as situation-dependent affective signals and accomplish important communicative functions. We report, for the first time, a call and response acoustic playback assay of bidirectional social communication in juvenile Shank3 rats. Interestingly, we found that Shank3-deficient null males did not demonstrate the enhanced social approach behavior typically exhibited following playback of pro-social USV. Concomitantly, we discovered that emission of USV in response to playback was not genotype-dependent and emitted response calls were divergent in meaning. This is the first report of these socially relevant responses using a genetic model of ASD. A comprehensive and empirical analysis of vigorous play during juvenile reciprocal social interactions further revealed fewer bouts and reduced durations of time spent playing by multiple key parameters, including reduced anogenital sniffing and allogrooming. We further discovered that male null Shank3-deficient pups emitted fewer isolation-induced USV than Shank3 wildtype controls. Postnatal whole brain anatomical phenotyping was applied to visualize anatomical substrates that underlie developmental phenotypes. The data presented here lend support for the important role of Shank3 in social communication, the core symptom domain of ASD. By increasing the number of in vivo functional outcome measures, we improved the likelihood for identifying and moving forward with medical interventions. Autism Res 2018, 11: 587-601. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Clinically relevant outcomes are required to demonstrate the utility of therapeutics. We introduce findings in a rat model, and assess the impact of mutations in Shank3, an autism risk gene. We found that males with deficient expression of Shank3 did not demonstrate typical responses in a bi-directional social communication test and that social interaction was lower on key parameters. Outcome measures reported herein extend earlier results in mice and capture responses to acoustic calls, which is analogous to measuring receptive and expressive communication.


Assuntos
Transtorno do Espectro Autista/genética , Transtornos Cromossômicos/genética , Comunicação , Modelos Animais de Doenças , Modelos Genéticos , Proteínas do Tecido Nervoso/genética , Comportamento Social , Fatores Etários , Animais , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Análise Mutacional de DNA , Comportamento Exploratório , Deleção de Genes , Relações Interpessoais , Masculino , Fenótipo , Jogos e Brinquedos , Ratos , Vocalização Animal
17.
Curr Top Behav Neurosci ; 35: 213-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28864977

RESUMO

Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions characterized by deficits in social communication and by repetitive and stereotypic patterns of behaviors, with no pharmacological treatments available to treat these core symptoms. Oxytocin is a neuropeptide that powerfully regulates mammalian social behavior and has been shown to exert pro-social effects when administered intranasally to healthy human subjects. In the last decade, there has been a significant interest in using oxytocin to treat social behavior deficits in ASD. However, little attention has been paid to whether the oxytocin system is perturbed in subgroups of individuals with ASD and whether these individuals are likely to benefit more from an oxytocin treatment. This oversight may in part be due to the enormous heterogeneity of ASD and the lack of methods to carefully probe the OXT system in human subjects. Animal models for ASD are valuable tools to clarify the implication of the oxytocin system in ASD and can help determine whether perturbation in this system should be considered in future clinical studies as stratifying biomarkers to inform targeted treatments in subgroups of individuals with ASD. In this chapter, we review the literature on genetic- and environmental-based animal models for ASD, in which perturbations in the oxytocin system and/or the effect of oxytocin administration on the ASD-associated phenotype have been investigated.


Assuntos
Transtorno do Espectro Autista/metabolismo , Comportamento Animal/fisiologia , Ocitocina/metabolismo , Comportamento Social , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Ocitocina/administração & dosagem
18.
Autism Res ; 11(1): 59-68, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29052348

RESUMO

Individuals with SHANK3 mutations have severely impaired receptive and expressive language abilities. While brain responses are known to be abnormal in these individuals, the auditory cortex response to sound has remained largely understudied. In this study, we document the auditory cortex response to speech and non-speech sounds in the novel Shank3-deficient rat model. We predicted that the auditory cortex response to sounds would be impaired in Shank3-deficient rats. We found that auditory cortex responses were weaker in Shank3 heterozygous rats compared to wild-type rats. Additionally, Shank3 heterozygous responses had less spontaneous auditory cortex firing and were unable to respond well to rapid trains of noise bursts. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome. Autism Res 2018, 11: 59-68. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Individuals with SHANK3 mutations have severely impaired language abilities, yet the auditory cortex response to sound has remained largely understudied. In this study, we found that auditory cortex responses were weaker and were unable to respond well to rapid sounds in Shank3-deficient rats compared to control rats. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome.


Assuntos
Estimulação Acústica , Córtex Auditivo/fisiopatologia , Percepção Auditiva/fisiologia , Proteínas do Tecido Nervoso/deficiência , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Ratos
19.
Acta Neuropathol ; 134(4): 537-566, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28584888

RESUMO

Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Neurônios/metabolismo , Neurônios/patologia
20.
Elife ; 62017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139198

RESUMO

Mutations in the synaptic gene SHANK3 lead to a neurodevelopmental disorder known as Phelan-McDermid syndrome (PMS). PMS is a relatively common monogenic and highly penetrant cause of autism spectrum disorder (ASD) and intellectual disability (ID), and frequently presents with attention deficits. The underlying neurobiology of PMS is not fully known and pharmacological treatments for core symptoms do not exist. Here, we report the production and characterization of a Shank3-deficient rat model of PMS, with a genetic alteration similar to a human SHANK3 mutation. We show that Shank3-deficient rats exhibit impaired long-term social recognition memory and attention, and reduced synaptic plasticity in the hippocampal-medial prefrontal cortex pathway. These deficits were attenuated with oxytocin treatment. The effect of oxytocin on reversing non-social attention deficits is a particularly novel finding, and the results implicate an oxytocinergic contribution in this genetically defined subtype of ASD and ID, suggesting an individualized therapeutic approach for PMS.


Assuntos
Transtornos Cromossômicos/tratamento farmacológico , Proteínas do Tecido Nervoso/deficiência , Ocitocina/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 22 , Modelos Animais de Doenças , Hipocampo/patologia , Córtex Pré-Frontal/patologia , Ratos , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...