Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 20990, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697365

RESUMO

Aquaculture threatens natural resources by fishing down the sea to supply fishmeal. Alternative protein sources in aquafeeds can provide a solution, particularly those that are waste from other operations and thereby reduce feed production costs. Toward this goal, we examined the waste biomass of marine periphyton from biofilters of an integrated multi-trophic aquaculture (IMTA) system as a replacement for fishmeal in diets of gilthead seabream (Sparus aurata). Four isoproteic (41%) and isolipidic (16.7%) aquafeeds were formulated with increased content of periphyton and a corresponding decrease in fishmeal from 20 to 15, 10, or 0%. The growth and biochemical content of seabream fingerlings (initial body weight 10 g) were examined over 132 days. Replacing 50% of fishmeal by waste periphyton improved feed conversion ratio (1.2 vs. 1.35 in the control diet) without harming fish growth. The complete replacement of fishmeal with periphyton resulted in 15% slower growth but significantly higher protein content in the fish flesh (59 vs. 52% in the control diet). Halving fishmeal content reduced feed cost by US$ 0.13 kg-1 feed and saved 30% in the cost of conversion of feed to fish biomass (US$ 0.58 kg-1 produced fish vs. $0.83 in the control diet). Finally, the total replacement of fishmeal by waste periphyton in the diet reduced the fish in-fish out ratio to below 1 (0.5-0.9) as compared to 1.36 in the control diet. Replacing fishmeal with on-farm produced periphyton minimizes aquaculture footprint through the removal of excess nutrients in effluents and the use of waste biomass to reduce the 'fish in' content in aquafeeds and fish production costs. The present study demonstrates the great practical potential of this dual use of marine periphyton in enhancing the circular economy concept in sustainable fish production.


Assuntos
Ração Animal , Produtos Pesqueiros , Perifíton , Dourada , Animais , Aquicultura , Biomassa , Produtos Pesqueiros/análise , Produtos Pesqueiros/economia , Produtos Pesqueiros/provisão & distribuição , Dourada/crescimento & desenvolvimento
3.
Nat Microbiol ; 4(12): 2456-2465, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548685

RESUMO

The term core microbiome describes microbes that are consistently present in a particular habitat. If the conditions in that habitat are highly variable, core microbes may also be considered to be ecological generalists. However, little is known about whether metabolic competition and microbial interactions influence the ability of some microbes to persist in the core microbiome while others cannot. We investigated microbial communities at three sites in the guts of European seabass under four dietary conditions. We identified generalist core microbial populations in each gut site that are shared across fish, present under multiple diets and persistent over time. We found that core microbes tend to show synergistic growth in co-culture, and low levels of predicted and validated metabolic competition. Within core microbial species, we found high levels of intraspecific variability and strain-specific habitat specialization. Thus, both intraspecific variability and interspecific facilitation may contribute to the ecological stability of the animal core microbiome.


Assuntos
Peixes/microbiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/isolamento & purificação , Dieta , Microbioma Gastrointestinal/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , RNA Ribossômico 16S
4.
Front Physiol ; 10: 808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333482

RESUMO

Fish larvae differ greatly from the adult form in their morphology and organ functionality. The functionality of the gastrointestinal tract depends on the expression of various pumps, transporters, and channels responsible for feed digestion and nutrients absorption. During the larval period, the gastrointestinal tract develops from a simple closed tube, into its complex form with differentiated segments, crypts and villi, as found in the adult. In this study, we characterized the expression of three peptide transporters (PepT1a, PepT1b, and PepT2) in the gastrointestinal tract of Mozambique tilapia (Oreochromis mossambicus) larvae along 12 days of development, from pre-hatching to the completion of yolk sac absorption. Gene expression analysis revealed differential and complimentary time-dependent expression of the PepT1 variants and PepT2 along the larval development period. Immunofluorescence analysis showed differential protein localization of the three peptide transporters (PepTs) along the gastrointestinal tract, in a similar pattern to the adult. In addition, PepT1a was localized in mucosal cells in the larvae esophagus, in much higher abundance than in the adults. The results of this study demonstrate specialization of intestinal sections and absorbance potential of the enterocytes prior to the onset of active exogenous feeding, thus pointing to an uncharacterized function and role of the gastrointestinal tract and its transporters during the larval period.

5.
Elife ; 72018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30454554

RESUMO

The hologenome concept proposes that microbes and their host organism are an independent unit of selection. Motivated by this concept, we hypothesized that thermal acclimation in poikilothermic organisms, owing to their inability to maintain their body temperature, is connected to their microbiome composition. To test this hypothesis, we used a unique experimental setup with a transgenerational selective breeding scheme for cold tolerance in tropical tilapias. We tested the effects of the selection on the gut microbiome and on host transcriptomic response. Interestingly, we found that host genetic selection for thermal tolerance shapes the microbiome composition and its response to cold. The microbiomes of cold-resistant fish showed higher resilience to temperature changes, indicating that the microbiome is shaped by its host's selection. These findings are consistent with the hologenome concept and highlight the connection between the host and its microbiome's response to the environment.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Microbiota/genética , Seleção Genética , Tilápia/genética , Tilápia/fisiologia , Animais , Biodiversidade , Soluções Tampão , Microbioma Gastrointestinal/genética , Dosagem de Genes , Modelos Lineares , Fígado/metabolismo , Fenótipo , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética , Transcriptoma/genética
6.
PLoS One ; 13(8): e0202351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138368

RESUMO

Nile tilapia (Oreochromis niloticus) is the world's most widely cultured fish species. Therefore, its nutritional physiology is of great interest from an aquaculture perspective. Studies conducted on several fish species, including tilapia, demonstrated the beneficial effects of dietary salt supplementation on growth; however, the mechanism behind these beneficial effects is still not fully understood. The fish intestine is a complex system, with functions, such as nutrient absorption, ion equilibrium and acid-base balance that are tightly linked and dependent on each other's activities and products. Ions are the driving force in the absorption of feed components through pumps, transporters and protein channels. In this study, we examined the impact of 5% increase in dietary NaCl on protein, lipid, ash and dry matter digestibility, as well as on the expression of intestinal peptide transporters (PepTs) and ion pumps (Na+/K+-ATPase, V-H+-ATPase, N+/H+-Exchanger) in Nile tilapia. In addition, effects on the gut microbiome were evaluated. Our results show that dietary salt supplementation significantly increased digestibility of all measured nutritional components, peptide transporters expression and ion pumps activity. Moreover, changes in the gut microbial diversity were observed, and were associated with lipid digestibility and Na+/K+-ATPase expression.


Assuntos
Ração Animal , Ciclídeos/metabolismo , Ciclídeos/microbiologia , Microbioma Gastrointestinal , Cloreto de Sódio na Dieta/administração & dosagem , Ração Animal/análise , Animais , Aquicultura , Ciclídeos/crescimento & desenvolvimento , Dieta , Fezes/microbiologia , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , RNA Mensageiro/metabolismo
7.
J Nutr Sci ; 4: e21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097704

RESUMO

The objective of the present study was to examine the effect of diets with descending fish meal (FM) inclusion levels and the addition of salt to the diet containing the lowest FM level on growth performances, feed conversion ratio, and intestinal solute carrier family 6 member 19 (SLC6A19) and oligopeptide transporter 1 (PEPT1) transcript levels, in freshwater-adapted European sea bass (Dicentrarchus labrax). We first isolated by molecular cloning and sequenced a full-length cDNA representing the neutral amino acid transporter SLC6A19 in sea bass. The cDNA sequence was deposited in GenBank database (accession no. KC812315). The twelve transmembrane domains and the 'de novo' prediction of the three-dimensional structure of SLC6A19 protein (634 amino acids) are presented. We then analysed diet-induced changes in the mRNA copies of SLC6A19 and PEPT1 genes in different portions of sea bass intestine using real-time RT-PCR. Sea bass were fed for 6 weeks on different diets, with ascending levels of fat or descending levels of FM, which was replaced with vegetable meal. The salt-enriched diet was prepared by adding 3 % NaCl to the diet containing 10 % FM. SLC6A19 mRNA in the anterior and posterior intestine of sea bass were not modulated by dietary protein sources and salt supplementation. Conversely, including salt in a diet containing a low FM percentage up-regulated the mRNA copies of PEPT1 in the hindgut. Fish growth correlated positively with the content of FM in the diets. Interestingly, the addition of salt to the diet containing 10 % FM improved feed intake, as well as specific growth rate and feed conversion ratio.

8.
Gen Comp Endocrinol ; 206: 146-54, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25088575

RESUMO

Euryhaline teleosts are faced with significant challenges during changes in salinity. Osmoregulatory responses to salinity changes are mediated through the neuroendocrine system which directs osmoregulatory tissues to modulate ion transport. Prolactin (PRL) plays a major role in freshwater (FW) osmoregulation by promoting ion uptake in osmoregulatory tissues, including intestine. We measured mRNA expression of ion pumps, Na(+)/K(+)-ATPase α3-subunit (NKAα3) and vacuolar type H(+)-ATPase A-subunit (V-ATPase A-subunit); ion transporters/channels, Na(+)/K(+)/2Cl(-) co-transporter (NKCC2) and cystic fibrosis transmembrane conductance regulator (CFTR); and the two PRL receptors, PRLR1 and PRLR2 in eleven intestinal segments of Mozambique tilapia (Oreochromis mossambicus) acclimated to FW or seawater (SW). Gene expression levels of NKAα3, V-ATPase A-subunit, and NKCC2 were generally lower in middle segments of the intestine, whereas CFTR mRNA was most highly expressed in anterior intestine of FW-fish. In both FW- and SW-acclimated fish, PRLR1 was most highly expressed in the terminal segment of the intestine, whereas PRLR2 was generally most highly expressed in anterior intestinal segments. While NKCC2, NKAα3 and PRLR2 mRNA expression was higher in the intestinal segments of SW-acclimated fish, CFTR mRNA expression was higher in FW-fish; PRLR1 and V-ATPase A-subunit mRNA expression was similar between FW- and SW-acclimated fish. Next, we characterized the effects of hypophysectomy (Hx) and PRL replacement on the expression of intestinal transcripts. Hypophysectomy reduced both NKCC2 and CFTR expression in particular intestinal segments; however, only NKCC2 expression was restored by PRL replacement. Together, these findings describe how both acclimation salinity and PRL impact transcript levels of effectors of ion transport in tilapia intestine.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Transporte de Íons/fisiologia , Prolactina/farmacologia , Receptores da Prolactina/genética , Salinidade , Tilápia/metabolismo , Aclimatação/fisiologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Água Doce , Intestinos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Prolactina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Tilápia/crescimento & desenvolvimento , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Equilíbrio Hidroeletrolítico/genética
9.
Sci Rep ; 3: 1558, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23558231

RESUMO

Bacteria associated with the digestive tract of multicellular organisms have been shown to play a major role in their hosts' functioning. In fish, it has been proposed that food fermentation occurs inside the pyloric ceca, pouch like organs found in their digestive tract. However, this notion remains controversial. Furthermore, changes in pyloric cecal bacterial populations under different diets have yet to be demonstrated in fish. In this study, we explore the changes occurring in the bacterial community residing in the pyloric ceca of carnivorous fish fed different diets, which were shown to induce different growth rates. Our results revealed that different diets do indeed induce distinct bacterial compositions within the pyloric ceca. We found that, when salt was added to a low fish meal diet, the bacterial changes were accompanied by a significant enhancement in weight gain, hinting at a possible involvement of the bacterial community in energy harvest.


Assuntos
Bass/metabolismo , Bass/microbiologia , Piloro/metabolismo , Piloro/microbiologia , Cloreto de Sódio na Dieta/metabolismo , Animais , Fenômenos Fisiológicos Bacterianos , Consórcios Microbianos
10.
J Exp Zool A Comp Exp Biol ; 301(9): 776-82, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15559939

RESUMO

Predation has long been described as one of the major driving forces in evolution. Guppies (Poecilia reticulata) from natural populations exposed to different predation pressures, were found to have different life history traits. Reproductive plasticity in response to direct predation cues has mainly been reported for invertebrates. The goals of the present study were to determine whether exposure to predation cues would induce reproductive phenotypic plasticity in female guppies and to determine whether the effective cues are visual, chemical, or a combination of both. In our first experiment, female guppies exposed to predation cues of the african cichlids Aulonocara nyassae increased their reproductive output by almost two fold, having larger brood-sizes and shorter brood-interval at the first spawn. This effect disappeared in the second spawn in the absence of predators. In the second experiment we found that exposure to the predators induced an increase in the brood-size regardless of whether the cue was: only visual, only chemical, visual and chemical or visual, chemical and tactile. The impacts of these cues were equally powerful on the tested variables and they did not have any cumulative effect. Similar to the results of the first experiment, this effect disappeared in the second spawn, in the absence of predation cues. The present study demonstrates a direct immediate and reversible effect of predation cues on guppy reproduction.


Assuntos
Adaptação Fisiológica , Sinais (Psicologia) , Poecilia/fisiologia , Comportamento Predatório , Reprodução/fisiologia , Análise de Variância , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...