RESUMO
Tropical South America plays a central role in global climate. Bowen ratio teleconnects to circulation and precipitation processes far afield, and the global CO2 growth rate is strongly influenced by carbon cycle processes in South America. However, quantification of basin-wide seasonality of flux partitioning between latent and sensible heat, the response to anomalies around climatic norms, and understanding of the processes and mechanisms that control the carbon cycle remains elusive. Here, we investigate simulated surface-atmosphere interaction at a single site in Brazil, using models with different representations of precipitation and cloud processes, as well as differences in scale of coupling between the surface and atmosphere. We find that the model with parameterized clouds/precipitation has a tendency toward unrealistic perpetual light precipitation, while models with explicit treatment of clouds produce more intense and less frequent rain. Models that couple the surface to the atmosphere on the scale of kilometers, as opposed to tens or hundreds of kilometers, produce even more realistic distributions of rainfall. Rainfall intensity has direct consequences for the "fate of water," or the pathway that a hydrometeor follows once it interacts with the surface. We find that the model with explicit treatment of cloud processes, coupled to the surface at small scales, is the most realistic when compared to observations. These results have implications for simulations of global climate, as the use of models with explicit (as opposed to parameterized) cloud representations becomes more widespread.
RESUMO
Considerable uncertainty surrounds the fate of Amazon rainforests in response to climate change. Here, carbon (C) flux predictions of five terrestrial biosphere models (Community Land Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated BIosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1 (JULES) and Simple Biosphere model version 3 (SiB3)) and a hydrodynamic terrestrial ecosystem model (the Soil-Plant-Atmosphere (SPA) model) were evaluated against measurements from two large-scale Amazon drought experiments. Model predictions agreed with the observed C fluxes in the control plots of both experiments, but poorly replicated the responses to the drought treatments. Most notably, with the exception of ED2, the models predicted negligible reductions in aboveground biomass in response to the drought treatments, which was in contrast to an observed c. 20% reduction at both sites. For ED2, the timing of the decline in aboveground biomass was accurate, but the magnitude was too high for one site and too low for the other. Three key findings indicate critical areas for future research and model development. First, the models predicted declines in autotrophic respiration under prolonged drought in contrast to measured increases at one of the sites. Secondly, models lacking a phenological response to drought introduced bias in the sensitivity of canopy productivity and respiration to drought. Thirdly, the phenomenological water-stress functions used by the terrestrial biosphere models to represent the effects of soil moisture on stomatal conductance yielded unrealistic diurnal and seasonal responses to drought.