Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 5(4): txab193, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729459

RESUMO

Litter sizes of commercial sows have increased considerably over recent decades, and often exceed the number of functional teats on the sow. The objective of this study was to evaluate the effect of litter size after cross-fostering relative to sow functional teat number on piglet preweaning growth and mortality. A total of 39 litters (561 piglets) were used in a randomized complete block design; blocking factors were farrowing day and sow parity, body condition score, and functional teat number. Three Litter Size treatments were compared (relative to sow functional teat number): Decreased (two piglets less); Control (same number of piglets); Increased (two piglets more). Piglets were randomly allotted to treatment at 24 h after birth to form litters of the appropriate size, with similar mean and CV of birth weight within block. Weaning weights (WW) were collected at 19.5 ± 0.50 d of age; preweaning mortality (PWM) was recorded. Litter sizes were between 11 and 17 piglets, depending on block and treatment. The Decreased treatment had lower (P ≤ 0.05) PWM than the Increased (7.7% and 17.9%, respectively); the Control was intermediate (11.5%) and not different (P > 0.05) from the other treatments. The rate of decline in litter size from birth to weaning was greater (P ≤ 0.05) for the Increased than the Decreased treatment (-0.16 vs. -0.05 piglets per day), with the Control (-0.09 piglets per day) being intermediate and different (P ≤ 0.05) to the other two treatments. Litter sizes at weaning were greater (P ≤ 0.05) for the Increased than the Decreased treatment (13.3 and 11.3, respectively); the Control treatment was intermediate (12.6) and not different (P > 0.05) to the other treatments. The log odds of PWM increased with the decreasing birth weight, at a similar rate (P > 0.05) for all Litter Size treatments. However, the intercept was greater (P ≤ 0.05) for the Increased compared with the Decreased treatment; the Control was intermediate and different (P > 0.05) to the other two treatments. Mean WW tended (P = 0.07) to be greater for the Decreased (6.17 kg) compared to the Control and Increased treatments (5.86 and 5.84 kg, respectively). In conclusion, increasing litter size after cross-fostering relative to the number of functional teats of the sow increased piglet PWM, and tended to decrease WW.

2.
Transl Anim Sci ; 5(1): txab030, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841203

RESUMO

Cross-fostering is a practice commonly used in the swine industry to equalize litter sizes, however, there is limited understanding of the optimum cross-fostering methods that will maximize piglet preweaning growth and survival. This study evaluated the effects of within-litter variation in birth weight after cross-fostering on piglet preweaning mortality (PWM) and weaning weight (WW) using litters of 15 piglets. A hierarchical incomplete block design was used (blocking factors: day of farrowing and sow parity, body condition score, and number of functional teats) with a 3 × 2 factorial arrangement of treatments: 1) Birth Weight Category (BWC): Light (<1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (1.5 to 2.0 kg); 2) Litter Composition: UNIFORM (all 15 piglets in each litter of the same BWC), or MIXED (five piglets in each litter from each BWC, i.e., five Light, five Medium, and five Heavy piglets). At 24 h after birth, piglets were weighed and randomly allotted to litter composition treatments from within BWC. The experimental unit was five piglets of the same BWC; there were three experimental units within each Litter Composition treatment litter. There were 17 blocks, each of six litters (one UNIFORM litter of each BWC; three MIXED litters) and 51 replicates (three replicates per block of six litters) for a total of 102 cross-fostered litters and 1,530 piglets. Piglets were weaned at 19.7 ± 0.46 d of age; WW and PWM were measured. PROC GLIMMIX and MIXED of SAS were used to analyze PWM and WW, respectively. Models included BWC, Litter Composition, the interaction, and replicate within the block. There were BWC by Litter Composition treatment interactions (P ≤ 0.05) for PWM and WW. Preweaning mortality was greater (P ≤ 0.05) for Light piglets in MIXED than UNIFORM litters. In contrast, for Heavy piglets, PWM was greater (P ≤ 0.05) and WW was lower (P ≤ 0.05) in UNIFORM than MIXED litters. Medium piglets had similar (P > 0.05) PWM and WW in UNIFORM and MIXED litters. The results of this study, which involved large litter sizes typical of current commercial production, suggested that for piglet survival to weaning, using cross-fostering to form litters of piglets of similar birth weight was beneficial for light piglets, detrimental for heavy piglets, and neutral for medium piglets.

3.
Transl Anim Sci ; 5(3): txab039, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34723136

RESUMO

Cross-fostering is commonly used in commercial swine production to equalize litter sizes and/or adjust piglet birth weights within litters. However, there is limited published information on optimum cross-fostering procedures. This study evaluated the effects of within-litter birth weight variation after cross-fostering (using litters of 14 piglets) on piglet preweaning mortality (PWM) and weaning weight (WW). An RCBD was used (blocking factors were day of farrowing and sow parity, body condition score, and functional teat number) with an incomplete factorial arrangement of the following two treatments: 1) birth weight category (BWC): light (<1.0 kg), medium (1.0 to 1.5 kg), or heavy (1.5 to 2.0 kg); 2) litter composition: uniform, all piglets in the litter of the same BWC [uniform light (14 light piglets); uniform medium (14 medium piglets); uniform heavy (14 heavy piglets)]; mixed, piglets in the litter of two or more BWC [L+M (seven light and seven medium piglets); M+H (seven medium and seven heavy piglets); L+M+H (three light, six medium, and five heavy piglets)]. Piglets were weighed at 24 h after birth and randomly allotted to litter composition treatment from within BWC; all piglets were cross-fostered. There were 47 blocks of six litters (total 282 litters and 3,948 piglets). Weaning weights were collected at 18.7 ± 0.64 d of age; all PWM was recorded. Individual piglet WW and PWM data were analyzed using PROC MIXED and PROC GLIMMIX of SAS, respectively; models included fixed effects of BWC, litter composition, and the interaction, and random effects of sow within the block. There was litter composition by BWC interactions (P ≤ 0.05) for WW and PWM. Within each BWC, WW generally increased and PWM generally decreased as littermate weight decreased. For example, WW was greatest (P ≤ 0.05) for light piglets in uniform light litters, for medium piglets in L+M litters, and for heavy piglets in L+M+H litters. Preweaning mortality was lowest (P ≤ 0.05) for medium piglets in L+M litters, and for heavy piglets in L+M+H litters; however, litter composition had no effect (P > 0.05) on PWM of light piglets. In conclusion, increasing the average birth weight of littermates after cross-fostering generally decreased WW and increased PWM for piglets of all birth weight categories. This implies that the optimum approach to cross-fostering that maximizes piglet preweaning growth and survival is likely to vary depending on the birth weight distribution of the population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...