Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 120(38): 7475-83, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27569379

RESUMO

Pyrazolate-bridged dinuclear Pt(II) complexes represent a series of molecules with tunable absorption and emission properties that can be directly modulated by structural factors, such as the Pt-Pt distance. However, direct experimental information regarding the structure of the emissive triplet excited state has remained scarce. Using time-resolved wide-angle X-ray scattering (WAXS), the excited triplet state molecular structure of [Pt(ppy)(µ-t-Bu2pz)]2 (ppy = 2-phenylpyridine; t-Bu2pz = 3,5-di-tert-butylpyrazolate), complex 1, was obtained in a dilute (0.5 mM) toluene solution utilizing the monochromatic X-ray pulses at Beamline 11IDD of the Advanced Photon Source. The excited-state structural analysis of 1 was performed based on the results from both transient WAXS measurements and density functional theory calculations to shed light on the primary structural changes in its triplet metal-metal-to-ligand charge-transfer (MMLCT) state, in particular, the Pt-Pt distance and ligand rotation. We found a pronounced Pt-Pt distance contraction accompanied by rotational motions of ppy ligands toward one another in the MMLCT state of 1. Our results suggest that the contraction is larger than what has previously been reported, but they are in good agreement with recent theoretical efforts and suggest the ppy moieties as targets for rational synthesis aimed at tuning the excited-state structure and properties.

2.
J Am Chem Soc ; 137(30): 9670-84, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26154849

RESUMO

Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)](+) and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)](+) (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient absorption spectroscopy, time-dependent density functional theory, and quantum dynamics simulations. The combined results show that these complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (<300 fs) from the (1)MLCT state into TiO2 nanoparticles. The results also indicate that the TiO2-phen distance in these systems does not have significant effect on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices.

3.
J Phys Chem A ; 118(45): 10497-506, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25015003

RESUMO

In this study, ultrafast optical transient absorption and X-ray transient absorption (XTA) spectroscopy are used to probe the excited-state dynamics and structural evolution of copper(I) bicinchoninic acid ([Cu(I)(BCA)2](+)), which has similar but less frequently studied biquinoline-based ligands compared to phenanthroline-based complexes. The optical transient absorption measurements performed on the complex in a series of polar protic solvents demonstrate a strong solvent dependency for the excited lifetime, which ranges from approximately 40 ps in water to over 300 ps in 2-methoxyethanol. The XTA experiments showed a reduction of the prominent 1s → 4pz edge peak in the excited-state X-ray absorption near-edge structure (XANES) spectrum, which is indicative of an interaction with a fifth ligand, most likely the solvent. Analysis of the extended X-ray absorption fine structure (EXAFS) spectrum shows a shortening of the metal-ligand bond in the excited state and an increase in the coordination number for the Cu(II) metal center. A flattened structure is supported by DFT calculations that show that the system relaxes into a flattened geometry with a lowest-energy triplet state that has a dipole-forbidden transition to the ground state. While the short excited-state lifetime relative to previously studied Cu(I) diimine complexes could be attributed to this dark triplet state, the strong solvent dependency and the reduction of the 1s → 4pz peak in the XTA data suggest that solvent interaction could also play a role. This detailed study of the dynamics in different solvents provides guidance for modulating excited-state pathways and lifetimes through structural factors such as solvent accessibility to fulfill the excited-state property requirements for efficient light harvesting and electron injection.

4.
J Phys Chem A ; 117(39): 9807-13, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23697577

RESUMO

The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru3(CO)12, by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru3(CO)10 being the most dominating one. The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions.

5.
J Phys Chem B ; 117(16): 4705-12, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23153315

RESUMO

Although understanding the structural dynamics associated with ligand photodissociation is necessary in order to correlate structure and function in biological systems, few techniques are capable of measuring the ultrafast dynamics of these systems in solution-phase at room temperature. We present here a detailed X-ray transient absorption (XTA) study of the photodissociation of CO-bound myoglobin (Fe(II)CO-Mb) in room-temperature aqueous buffer solution with a time resolution of 80 ps, along with a general procedure for handling biological samples under the harsh experimental conditions that transient X-ray experiments entail. The XTA spectra of (Fe(II)CO-Mb) exhibit significant XANES and XAFS alterations following 527 nm excitation, which remain unchanged for >47 µs. These spectral changes indicate loss of the CO ligand, resulting in a five-coordinate, domed heme, and significant energetic reorganization of the 3d orbitals of the Fe center. With the current experimental setup, each X-ray pulse in the pulse train, separated by ~153 ns, can be separately discriminated, yielding snapshots of the myoglobin evolution over time. These methods can be easily applied to other biological systems, allowing for simultaneous structural and electronic measurements of any biological system with both ultrafast and slow time resolutions, effectively mapping out all of the samples' relevant physiological processes.


Assuntos
Monóxido de Carbono/química , Heme/química , Mioglobina/química , Monóxido de Carbono/metabolismo , Elétrons , Compostos Ferrosos/química , Mioglobina/metabolismo , Fotólise , Estrutura Terciária de Proteína , Soluções/química , Temperatura , Termodinâmica , Espectroscopia por Absorção de Raios X
6.
Angew Chem Int Ed Engl ; 51(31): 7692-6, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22740313

RESUMO

Caught in the light: The fulvalene diruthenium complex shown on the left side of the picture captures sun light, causing initial Ru-Ru bond rupture to furnish a long-lived triplet biradical of syn configuration. This species requires thermal activation to reach a crossing point (middle) into the singlet manifold on route to its thermal storage isomer on the right through the anti biradical.


Assuntos
Complexos de Coordenação/química , Fármacos Fotossensibilizantes/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Processos Fotoquímicos , Espectrofotometria Infravermelho , Fatores de Tempo , Espectroscopia por Absorção de Raios X
7.
J Phys Chem B ; 114(48): 15808-17, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21077602

RESUMO

The nature of one and two-photon absorption enhancement in a series of oligothiophene dendrimers, recently proposed for applications in entangled photon sensors and solar cells, has been analyzed using both theory (time dependent density functional theory calculations) and experiment (fluorescence upconversion measurements). The linear absorption spectra exhibit a red shift of the absorption maxima and broadening as a function of dendrimer generations. The two-photon absorption cross sections increase sharply with the number of thiophene units in the dendrimer. The cooperative enhancement in absorption two-photon cross sections is explained by (i) an increase in the excited-state density for larger molecules and (ii) delocalization of the low-lying excited states over extended thiophene chains. Fluorescence anisotropy measurements and examination of the calculated excited-state properties reveal that this delocalization is accompanied by a size-dependent decrease in excited-state symmetries. A substantial red shift of the emission maxima for larger dendrimers is explained through the vibronic planarization of the longest linear α-thiophene chain for the emitting excited state. For higher generations, the fluorescence quantum yield decreases due to increased nonradiative decay efficiency (e.g., intersystem crossing). The detailed information about the dendrimer 3D structure and excitations provides guidance for further optimizations of dendritic structures for nonlinear optical and opto-electronic applications.


Assuntos
Dendrímeros/química , Fluorescência , Teoria Quântica , Tiofenos/química , Polarização de Fluorescência , Modelos Moleculares , Estrutura Molecular , Fótons , Espectrometria de Fluorescência
8.
J Am Chem Soc ; 132(23): 7840-1, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20496892

RESUMO

Entangled photons generated by spontaneous parametric down-conversion (SPDC) have been used to investigate entangled two-photon absorption (ETPA) in multiannulene systems. The ETPA characteristics are shown to depend on the spatial orientation of the SPDC emission pattern. The expected dependence of the absorption rate on input flux is seen for emission patterns that exhibit spatial indistinguishability between the signal and idler photons, while no absorption is observed for a spatially distinguishable emission pattern. The amount of absorption of entangled photons is also seen to depend on the degree of overlap of the entangled photons for the indistinguishable conditions. Tunability of the entangled photon absorption can thus be achieved by utilizing the spatial characteristics of the entangled photon pairs.

9.
J Am Chem Soc ; 132(17): 6231-42, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20392046

RESUMO

A comprehensive photophysical and spectroscopic (electronic and Raman) study guided by density functional theory, DFT, CIS, and correlated ab initio calculations has been performed on a series of fully oxidized oligothiophenes with variable chain length, and up to four rings. A comparison with the properties of oligoenes and oligothiophenes is proposed. Absorption, fluorescence, lifetimes, flash-photolysis, phosphorescence, two-photon absorption, Raman, resonance Raman, and thermospectroscopy data are collected and interpreted according to the obtained theoretical results. The interest is focused on the ground electronic state and in the low-lying excited electronic states. Full oxygenation of the sulfur atoms of oligothiophenes results in: (i) restricted inter-ring isomerization such as observed from the absorption spectra; (ii) an effective quenching of fluorescence, and (iii) the appearance of dual emission. The emission features are explained by the interference of a dipole-allowed and a dipole-forbidden singlet excited states leading to simultaneous lighting from a local Frenkel and an intramolecular charge transfer photon-releasing configurations. These two excited states contribute to the broadening of the light emission spectrum. These properties highlight the similarity of these samples to that of oligoenes with comparable number of pi-electrons.


Assuntos
Tiofenos/química , Elétrons , Luz , Fenômenos Ópticos , Análise Espectral Raman
10.
J Am Chem Soc ; 131(3): 973-9, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19123819

RESUMO

The ability to do spectroscopy with a small number of entangled photons is an important development in the area of materials and sensing. This report investigates the effects of increasing thiophene dendrimer generation on the cross-section for both entangled (sigmaE) and random (deltaE) two-photon absorption cross-sections. Nonlinear optical properties of dendrimers are an interesting area of study because of potential applications in optical signal processing and remote sensing, and the use of a nonlinear optical material as a sensor for entangled photons offers great possibilities for applications in quantum lithography. Entangled two-photon absorption (ETPA) experiments and two-photon excited fluorescence (TPEF) experiments vary by at least 10 orders of magnitude in the photon flux used to probe the material. ETPA cross-sections from liquid samples as well as those of thin-film samples are investigated. An increase in sigmaE and de;taR with increasing dendrimer generation is observed, suggesting that the thiophene groups within the dendrimer nonlinearly absorb in a cooperative manner, which is further evidenced in the variation of cross-section per thiophene group. The nonlinear spectroscopic features obtained by the TPEF measurements were also obtained by the ETPA experiments, despite the fact that 10 orders of magnitude fewer photons are used in the latter technique. All dendrimer generations investigated in this work are found to have great potential for applications in quantum optical devices.

11.
J Phys Chem B ; 112(2): 283-93, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18052269

RESUMO

The motion of water molecules in mixtures of water and d6-dimethyl sulfoxide (DMSO) has been explored through molecular dynamics (MD) simulations using the SPC/E water model (J. Chem. Phys. 1987, 91, 6269) and the P2 DMSO model (J. Chem. Phys. 1993, 98, 8160). We evaluate the self-intermediate scattering functions, FS(Q,t), which are related by a Fourier transform to the incoherent structure factors, S(Q,omega), measured in quasielastic neutron scattering (QNS) experiments. We compare our results to recent QNS experiments on these mixtures reported by Bordallo et al. (J. Chem. Phys. 2004, 121, 12457). In addition to comparing the MD data to the experimental signals, which correspond to a convolution of S(Q,omega) with a resolution function, we examine the rotational and translational components of FS(Q,t) and investigate to what extent simulation results for the single-molecule dynamics follow the dynamical models that are used in the analysis of the experimental data. We find that the agreement between the experimental signal and the MD data is quite good and that the portion of FS(Q,t) due to translational dynamics is well represented by the jump-diffusion model. The model parameters and their composition dependence are in reasonable agreement with experiment, exhibiting similar trends in water mobility with composition. Specifically, we find that water motion is less hindered in water-rich and water-poor mixtures than it is near equimolar composition. We find that the extent of coupling between rotational and translational motion contributing to FS(Q,t) increases as the equimolar composition of the mixture is approached. Thus, the decoupling approximation, which is used to extract information on rotational relaxation from QNS spectra at higher momentum transfer (Q) values, becomes less accurate than that in water-rich or DMSO-rich mixtures. We also find that rotational relaxation deviates quite strongly from the isotropic rotational diffusion model. We explore this issue further by investigating the behavior of orientational time correlations for different unit vectors and corresponding to Legendre polynomials of orders 1-4. We find that the rotational time correlations of water molecules behave in a way that is more consistent with the extended jump rotation model recently proposed by Laage and Hynes (Science 2006, 311, 832).


Assuntos
Dimetil Sulfóxido/química , Água/química , Simulação por Computador , Modelos Moleculares , Conformação Molecular , Fatores de Tempo
12.
J Phys Chem B ; 109(35): 16891-900, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16853150

RESUMO

In this study, mobility and structure of water molecules in Aerosol OT (bis(2-ethylhexyl) sulfosuccinate, AOT) reverse micelles with water content w0 = 5 and Na+, K+, Cs+ counterions have been explored with molecular dynamics (MD) simulations. Using the Faeder/Ladanyi model (J. Phys. Chem. B, 2000, 104, 1033) of the reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function, FS(Q,t), for water hydrogen atoms that could be measured in a quasielastic neutron scattering experiment. Separate intermediate scattering functions FRS(Q,t) and FCMS(Q,t) were determined for rotational and translational motion. We find that the decay of FCMS(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior arises from decreased water mobility for molecules close to the interface and from confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay, which is consistent with relatively rapid restricted rotation and slower rotational relaxation over the full angular range. Rotational relaxation is anisotropic, with the O-H bond short-time rotational mobility considerably higher than that of the molecular dipole. This behavior is related to the decreased density of water-water hydrogen bonds in the vicinity of the interface compared to core or bulk water. We find that the interfacial mobility of water molecules is quite different for the three counterion types, but that the core mobility exhibits weak counterion dependence. Differences in interfacial mobility are strongly correlated with structural features, especially ion-water coordination, and the extent of disruption by the counterions of the water hydrogen bond network.

13.
J Chem Phys ; 121(16): 7855-68, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15485248

RESUMO

Motion of water molecules in Aerosol OT [sodium bis(2-ethylhexyl) sulfosuccinate, AOT] reverse micelles with water content w(0) ranging from 1 to 5 has been explored both experimentally through quasielastic neutron scattering (QENS) and with molecular dynamics (MD) simulations. The experiments were performed at the energy resolution of 85 microeV over the momentum transfer (Q) range of 0.36-2.53 A(-1) on samples in which the nonpolar phase (isooctane) and the AOT alkyl chains were deuterated, thereby suppressing their contribution to the QENS signal. QENS results were analyzed via a jump-diffusion/isotropic rotation model, which fits the results reasonably well despite the fact that confinement effects are not explicitly taken into account. This analysis indicates that in reverse micelles with low-water content (w(0)=1 and 2.5) translational diffusion rate is too slow to be detected, while for w(0)=5 the diffusion coefficient is much smaller than for bulk water. Rotational diffusion coefficients obtained from this analysis increase with w(0) and are smaller than for bulk water, but rotational mobility is less drastically reduced than translational mobility. Using the Faeder/Ladanyi model [J. Phys. Chem. B 104, 1033 (2000)] of reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function F(S)(Q,t) for water hydrogens. Comparison of the time Fourier transform of this F(S)(Q,t) with the QENS dynamic structure factor S(Q,omega), shows good agreement between the model and experiment. Separate intermediate scattering functions F(S) (R)(Q,t) and F(S) (CM)(Q,t) were determined for rotational and translational motion. Consistent with the decoupling approximation used in the analysis of QENS data, the product of F(S) (R)(Q,t) and F(S) (CM)(Q,t) is a good approximation to the total F(S)(Q,t). We find that the decay of F(S) (CM)(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior is due to lower water mobility close to the interface and to confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay. However, rotational mobility of O-H bond vectors in the interfacial region remains fairly high due to the lower density of water-water hydrogen bonds in the vicinity of the interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...