Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stroke ; 55(6): 1629-1640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639087

RESUMO

BACKGROUND: Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke. METHODS: Electroencephalography responses evoked by TMS applied to the ipsilesional motor cortex were acquired in patients with stroke with upper limb motor deficit in the acute (1 week), early (3 weeks), and late subacute (3 months) stages. Readouts of cortical reactivity, intracortical inhibition, and complexity of the evoked dynamics were drawn from TMS-evoked potentials induced by single-pulse and paired-pulse TMS (short-interval intracortical inhibition). Residual motor function was quantified through a detailed motor evaluation. RESULTS: From 76 patients enrolled, 66 were included (68.2±13.2 years old, 18 females), with a Fugl-Meyer score of the upper extremity of 46.8±19. The comparison with TMS-evoked potentials of healthy older revealed that most affected patients exhibited larger and simpler brain reactivity patterns (Pcluster<0.05). Bayesian ANCOVA statistical evidence for a link between abnormally high motor cortical excitability and impairment level. A decrease in excitability in the following months was significantly correlated with better motor recovery in the whole cohort and the subgroup of recovering patients. Investigation of the intracortical GABAergic inhibitory system revealed the presence of beneficial disinhibition in the acute stage, followed by a normalization of inhibitory activity. This was supported by significant correlations between motor scores and the contrast of local mean field power and readouts of signal dynamics. CONCLUSIONS: The present results revealed an abnormal motor cortical reactivity in patients with stroke, which was driven by perturbations and longitudinal changes within the intracortical inhibition system. They support the view that disinhibition in the ipsilesional motor cortex during the first-week poststroke is beneficial and promotes neuronal plasticity and recovery.


Assuntos
Eletroencefalografia , Potencial Evocado Motor , Córtex Motor , Inibição Neural , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Feminino , Masculino , Estimulação Magnética Transcraniana/métodos , Idoso , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Potencial Evocado Motor/fisiologia , Inibição Neural/fisiologia , Idoso de 80 Anos ou mais
2.
J Neural Eng ; 21(1)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211341

RESUMO

Objective.The literature investigating the effects of alpha oscillations on corticospinal excitability is divergent. We believe inconsistency in the findings may arise, among others, from the electroencephalography (EEG) processing for brain-state determination. Here, we provide further insights in the effects of the brain-state on cortical and corticospinal excitability and quantify the impact of different EEG processing.Approach.Corticospinal excitability was measured using motor evoked potential (MEP) peak-to-peak amplitudes elicited with transcranial magnetic stimulation (TMS); cortical responses were studied through TMS-evoked potentials' TEPs features. A TMS-EEG-electromyography (EMG) dataset of 18 young healthy subjects who received 180 single-pulse (SP) and 180 paired pulses (PP) to determine short-intracortical inhibition (SICI) was investigated. To study the effect of different EEG processing, we compared the brain-state estimation deriving from three published methods. The influence of presence of neural oscillations was also investigated. To evaluate the effect of the brain-state on MEP and TEP features variability, we defined the brain-state based on specific EEG phase and power combinations, only in trials where neural oscillations were present. The relationship between TEPs and MEPs was further evaluated.Main results.The presence of neural oscillations resulted in more consistent results regardless of the EEG processing approach. Nonetheless, the latter still critically affected the outcomes, making conclusive claims complex. With our approach, the MEP amplitude was positively modulated by the alpha power and phase, with stronger responses during the trough phase and high power. Power and phase also affected TEP features. Importantly, similar effects were observed in both TMS conditions.Significance.These findings support the view that the brain state of alpha oscillations is associated with the variability observed in cortical and corticospinal responses to TMS, with a tight correlation between the two. The results further highlight the importance of closed-loop stimulation approaches while underlining that care is needed in designing experiments and choosing the analytical approaches, which should be based on knowledge from offline studies to control for the heterogeneity originating from different EEG processing strategies.


Assuntos
Potencial Evocado Motor , Córtex Motor , Humanos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados , Encéfalo , Estimulação Magnética Transcraniana/métodos
3.
Commun Biol ; 7(1): 127, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273091

RESUMO

Recent research suggests that autistic females may have superior socio-cognitive abilities compared to autistic males, potentially contributing to underdiagnosis in females. However, it remains unclear whether these differences arise from distinct neurophysiological functioning in autistic males and females. This study addresses this question by presenting 41 autistic and 48 non-autistic adults with a spatially filtered faces oddball paradigm. Analysis of event-related potentials from scalp electroencephalography reveal a neurophysiological profile in autistic females that fell between those of autistic males and non-autistic females, highlighting sex differences in autism from the initial stages of face processing. This finding underscores the urgent need to explore neurophysiological sex differences in autism and encourages efforts toward a better comprehension of compensation mechanism and a clearer definition of what is meant by camouflaging.


Assuntos
Transtorno Autístico , Humanos , Masculino , Feminino , Transtorno Autístico/diagnóstico , Transtorno Autístico/psicologia , Encéfalo , Cognição , Potenciais Evocados , Eletroencefalografia
4.
J Cogn Neurosci ; 36(1): 143-154, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870524

RESUMO

The growing popularity of virtual reality systems has led to a renewed interest in understanding the neurophysiological correlates of the illusion of self-motion (vection), a phenomenon that can be both intentionally induced or avoided in such systems, depending on the application. Recent research has highlighted the modulation of α power oscillations over the superior parietal cortex during vection, suggesting the occurrence of inhibitory mechanisms in the sensorimotor and vestibular functional networks to resolve the inherent visuo-vestibular conflict. The present study aims to further explore this relationship and investigate whether neuromodulating these waves could causally affect the quality of vection. In a crossover design, 22 healthy volunteers received high amplitude and focused α-tACS (transcranial alternating current stimulation) over the superior parietal cortex while experiencing visually induced vection triggered by optokinetic stimulation. The tACS was tuned to each participant's individual α peak frequency, with θ-tACS and sham stimulation serving as controls. Overall, participants experienced better quality vection during α-tACS compared with control θ-tACS and sham stimulations, as quantified by the intensity of vection. The observed neuromodulation supports a causal relationship between parietal α oscillations and visually induced self-motion illusions, with their entrainment triggering overinhibition of the conflict within the sensorimotor and vestibular functional networks. These results confirm the potential of noninvasive brain stimulation for modulating visuo-vestibular conflicts, which could help to enhance the sense of presence in virtual reality environments.


Assuntos
Ilusões , Estimulação Transcraniana por Corrente Contínua , Realidade Virtual , Humanos , Estimulação Elétrica , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estudos Cross-Over
5.
Med ; 4(9): 591-599.e3, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437575

RESUMO

BACKGROUND: Around 25% of patients who have had a stroke suffer from severe upper-limb impairment and lack effective rehabilitation strategies. The AVANCER proof-of-concept clinical trial (NCT04448483) tackles this issue through an intensive and personalized-dosage cumulative intervention that combines multiple non-invasive neurotechnologies. METHODS: The therapy consists of two sequential interventions, lasting until the patient shows no further motor improvement, for a minimum of 11 sessions each. The first phase involves a brain-computer interface governing an exoskeleton and multi-channel functional electrical stimulation enabling full upper-limb movements. The second phase adds anodal transcranial direct current stimulation of the motor cortex of the lesioned hemisphere. Clinical, electrophysiological, and neuroimaging examinations are performed before, between, and after the two interventions (T0, T1, and T2). This case report presents the results from the first patient of the study. FINDINGS: The primary outcome (i.e., 4-point improvement in the Fugl-Meyer assessment of the upper extremity) was met in the first patient, with an increase from 6 to 11 points between T0 and T2. This improvement was paralleled by changes in motor-network structure and function. Resting-state and transcranial magnetic stimulation-evoked electroencephalography revealed brain functional changes, and magnetic resonance imaging (MRI) measures detected structural and task-related functional changes. CONCLUSIONS: These first results are promising, pointing to feasibility, safety, and potential efficacy of this personalized approach acting synergistically on the nervous and musculoskeletal systems. Integrating multi-modal data may provide valuable insights into underlying mechanisms driving the improvements and providing predictive information regarding treatment response and outcomes. FUNDING: This work was funded by the Wyss-Center for Bio and Neuro Engineering (WCP-030), the Defitech Foundation, PHRT-#2017-205, ERA-NET-NEURON (Discover), and SNSF (320030L_197899, NiBS-iCog).


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Medicina de Precisão , Resultado do Tratamento , Acidente Vascular Cerebral/terapia , Extremidade Superior
6.
Front Neurosci ; 17: 1004763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214390

RESUMO

Introduction: Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods: Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results: In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion: Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.

7.
Front Hum Neurosci ; 17: 982849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816506

RESUMO

Studies showed that motor expertise was found to induce improvement in language processing. Grounded and situated approaches attributed this effect to an underlying automatic simulation of the motor experience elicited by action words, similar to motor imagery (MI), and suggest shared representations of action conceptualization. Interestingly, recent results also suggest that the mental simulation of action by MI training induces motor-system modifications and improves motor performance. Consequently, we hypothesize that, since MI training can induce motor-system modifications, it could be used to reinforce the functional connections between motor and language system, and could thus lead to improved language performance. Here, we explore these potential interactions by reviewing recent fundamental and clinical literature in the action-language and MI domains. We suggested that exploiting the link between action language and MI could open new avenues for complementary language improvement programs. We summarize the current literature to evaluate the rationale behind this novel training and to explore the mechanisms underlying MI and its impact on language performance.

8.
Front Neurol ; 13: 939640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226086

RESUMO

Despite recent improvements, complete motor recovery occurs in <15% of stroke patients. To improve the therapeutic outcomes, there is a strong need to tailor treatments to each individual patient. However, there is a lack of knowledge concerning the precise neuronal mechanisms underlying the degree and course of motor recovery and its individual differences, especially in the view of brain network properties despite the fact that it became more and more clear that stroke is a network disorder. The TiMeS project is a longitudinal exploratory study aiming at characterizing stroke phenotypes of a large, representative stroke cohort through an extensive, multi-modal and multi-domain evaluation. The ultimate goal of the study is to identify prognostic biomarkers allowing to predict the individual degree and course of motor recovery and its underlying neuronal mechanisms paving the way for novel interventions and treatment stratification for the individual patients. A total of up to 100 patients will be assessed at 4 timepoints over the first year after the stroke: during the first (T1) and third (T2) week, then three (T3) and twelve (T4) months after stroke onset. To assess underlying mechanisms of recovery with a focus on network analyses and brain connectivity, we will apply synergistic state-of-the-art systems neuroscience methods including functional, diffusion, and structural magnetic resonance imaging (MRI), and electrophysiological evaluation based on transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) and electromyography (EMG). In addition, an extensive, multi-domain neuropsychological evaluation will be performed at each timepoint, covering all sensorimotor and cognitive domains. This project will significantly add to the understanding of underlying mechanisms of motor recovery with a strong focus on the interactions between the motor and other cognitive domains and multimodal network analyses. The population-based, multi-dimensional dataset will serve as a basis to develop biomarkers to predict outcome and promote personalized stratification toward individually tailored treatment concepts using neuro-technologies, thus paving the way toward personalized precision medicine approaches in stroke rehabilitation.

9.
Neuroimage ; 259: 119419, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777633

RESUMO

The use of TMS-EEG coupling as a neuroimaging tool for the functional exploration of the human brain recently gained strong interest. If this tool directly inherits the fine temporal resolution from EEG, its spatial counterpart remains unknown. In this study, we explored the spatial resolution of TMS-EEG coupling by evaluating the minimal distance between two stimulated cortical sites that would significantly evoke different response dynamics. TMS evoked responses were mapped on the sensorimotor region in twenty participants. The stimulation grid was composed of nine targets separated between 10 and 15 mm on average. The dynamical signatures of TMS evoked activity were extracted and compared between sites using both local and remote linear regression scores and spatial generalized mixed models. We found a significant effect of the distance between stimulated sites on their dynamical signatures, neighboring sites showing differentiable response dynamics. Besides, common dynamical signatures were also found between sites up to 25-30 mm from each other. This overlap in dynamical properties decreased with distance and was stronger between sites within the same Brodmann area. Our results suggest that the spatial resolution of TMS-EEG coupling might be at least as high as 10 mm. Furthermore, our results reveal an anisotropic spatial resolution that was higher across than within the same Brodmann areas, in accordance with the TMS induced E-field modeling. Common cytoarchitectonic leading to shared dynamical properties within the same Brodmann area could also explain this anisotropy. Overall, these findings suggest that TMS-EEG benefits from the spatial resolution of TMS, which makes it an accurate technique for meso-scale brain mapping.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral , Eletroencefalografia/métodos , Humanos , Estimulação Magnética Transcraniana/métodos
10.
PLoS One ; 17(6): e0270352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749512

RESUMO

The objective of this study was to evaluate the effect of Motor Imagery (MI) training on language comprehension. In line with literature suggesting an intimate relationship between the language and the motor system, we proposed that a MI-training could improve language comprehension by facilitating lexico-semantic access. In two experiments, participants were assigned to a kinesthetic motor-imagery training (KMI) group, in which they had to imagine making upper-limb movements, or to a static visual imagery training (SVI) group, in which they had to mentally visualize pictures of landscapes. Differential impacts of both training protocols on two different language comprehension tasks (i.e., semantic categorization and sentence-picture matching task) were investigated. Experiment 1 showed that KMI training can induce better performance (shorter reaction times) than SVI training for the two language comprehension tasks, thus suggesting that a KMI-based motor activation can facilitate lexico-semantic access after only one training session. Experiment 2 aimed at replicating these results using a pre/post-training language assessment and a longer training period (four training sessions spread over four days). Although the improvement magnitude between pre- and post-training sessions was greater in the KMI group than in the SVI one on the semantic categorization task, the sentence-picture matching task tended to provide an opposite pattern of results. Overall, this series of experiments highlights for the first time that motor imagery can contribute to the improvement of lexical-semantic processing and could open new avenues on rehabilitation methods for language deficits.


Assuntos
Cinestesia , Semântica , Humanos , Imagens, Psicoterapia , Cinestesia/fisiologia , Idioma , Tempo de Reação
11.
Front Hum Neurosci ; 16: 838454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360280

RESUMO

Visual processing is thought to function in a coarse-to-fine manner. Low spatial frequencies (LSF), conveying coarse information, would be processed early to generate predictions. These LSF-based predictions would facilitate the further integration of high spatial frequencies (HSF), conveying fine details. The predictive role of LSF might be crucial in automatic face processing, where high performance could be explained by an accurate selection of clues in early processing. In the present study, we used a visual Mismatch Negativity (vMMN) paradigm by presenting an unfiltered face as standard stimulus, and the same face filtered in LSF or HSF as deviant, to investigate the predictive role of LSF vs. HSF during automatic face processing. If LSF are critical for predictions, we hypothesize that LSF deviants would elicit less prediction error (i.e., reduced mismatch responses) than HSF deviants. Results show that both LSF and HSF deviants elicited a mismatch response compared with their equivalent in an equiprobable sequence. However, in line with our hypothesis, LSF deviants evoke significantly reduced mismatch responses compared to HSF deviants, particularly at later stages. The difference in mismatch between HSF and LSF conditions involves posterior areas and right fusiform gyrus. Overall, our findings suggest a predictive role of LSF during automatic face processing and a critical involvement of HSF in the fusiform during the conscious detection of changes in faces.

12.
Eur J Neurosci ; 55(1): 189-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796553

RESUMO

Reorganization of the sensorimotor cortex following permanent (e.g., amputation) or temporary (e.g., local anaesthesia) deafferentation of the hand has revealed large-scale plastic changes between the hand and face representations that are accompanied by perceptual correlates. The physiological mechanisms underlying this reorganization remain poorly understood. The aim of this study was to investigate sensorimotor interactions between the face and hand using an afferent inhibition transcranial magnetic stimulation protocol in which the motor evoked potential elicited by the magnetic pulse is inhibited when it is preceded by an afferent stimulus. We hypothesized that if face and hand representations in the sensorimotor cortex are functionally coupled, then electrocutaneous stimulation of the face would inhibit hand muscle motor responses. In two separate experiments, we delivered an electrocutaneous stimulus to either the skin over the right upper lip (Experiment 1) or right cheek (Experiment 2) and recorded muscular activity from the right first dorsal interosseous. Both lip and cheek stimulation inhibited right first dorsal interosseous motor evoked potentials. To investigate the specificity of this effect, we conducted two additional experiments in which electrocutaneous stimulation was applied to either the right forearm (Experiment 3) or right upper arm (Experiment 4). Forearm and upper arm stimulation also significantly inhibited the right first dorsal interosseous motor evoked potentials, but this inhibition was less robust than the inhibition associated with face stimulation. These findings provide the first evidence for face-to-hand afferent inhibition.


Assuntos
Córtex Motor , Estimulação Elétrica , Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana
13.
J Cogn Neurosci ; 33(8): 1563-1580, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496375

RESUMO

According to embodied theories, motor and language processing bidirectionally interact: Motor activation modulates behavior in lexico-semantic tasks (semantic resonance), and understanding motor-related words entails activation of the corresponding motor brain areas (motor resonance). Whereas many studies investigated such interaction in the first language (L1), only few did so in a second language (L2), focusing on motor resonance. Here, we directly compared L1 and a late L2, for the first time both in terms of semantic and motor resonance and both in terms of magnitude and timing, by taking advantage of single-pulse TMS. Twenty-five bilinguals judged, in each language, whether hand motor-related ("grasp") and non-motor-related verbs ("believe"), were physical or mental. Meanwhile, we applied TMS on the hand motor cortex at 125, 275, 350, and 500 msec post verb onset, and recorded behavioral responses and TMS-induced motor evoked potentials. TMS induced faster responses for L1 versus L2 motor and nonmotor verbs at 125 msec (three-way interaction ß = -0.0442, 95% CI [0.0814, -0.0070]), showing a semantic resonance effect at an early stage of word processing in L1 but not in L2. Concerning motor resonance, TMS-induced motor evoked potentials at 275 msec revealed higher motor cortex excitability for L2 versus L1 processing (two-way interaction ß = 0.095, 95% CI [0.017, 0.173]). These findings confirm action-language interaction at early stages of word recognition, provide further evidence that L1 and L2 are differently embodied, and call for an update of existing models of bilingualism and embodiment, concerning both language representations and processing.


Assuntos
Multilinguismo , Semântica , Idioma , Fenômenos Magnéticos , Estimulação Magnética Transcraniana
15.
Hum Brain Mapp ; 41(10): 2741-2761, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32379389

RESUMO

The modular organization of the cortex refers to subsets of highly interconnected nodes, sharing specific cytoarchitectural and dynamical properties. These properties condition the level of excitability of local pools of neurons. In this study, we described TMS evoked potentials (TEP) input-output properties to provide new insights into regional cortical excitability. We combined robotized TMS with EEG to disentangle region-specific TEP from threshold to saturation and describe their oscillatory contents. Twenty-two young healthy participants received robotized TMS pulses over the right primary motor cortex (M1), the right dorsolateral prefrontal cortex (DLPFC) and the right superior occipital lobe (SOL) at five stimulation intensities (40, 60, 80, 100, and 120% resting motor threshold) and one short-interval intracortical inhibition condition during EEG recordings. Ten additional subjects underwent the same experiment with a realistic sham TMS procedure. The results revealed interregional differences in the TEPs input-output functions as well as in the responses to paired-pulse conditioning protocols, when considering early local components (<80 ms). Each intensity in the three regions was associated with complex patterns of oscillatory activities. The quality of the regression of TEPs over stimulation intensity was used to derive a new readout for cortical excitability and dynamical properties, revealing lower excitability in the DLPFC, followed by SOL and M1. The realistic sham experiment confirmed that these early local components were not contaminated by multisensory stimulations. This study provides an entirely new analytic framework to characterize input-output relations throughout the cortex, paving the way to a more accurate definition of local cortical excitability.


Assuntos
Ondas Encefálicas/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Córtex Motor/fisiologia , Lobo Occipital/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Neurophysiol ; 123(1): 346-355, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774351

RESUMO

Visually induced illusion of self-motion (vection) has been used as a tool to address neural correlates of visual-vestibular interaction. The extent to which vestibular cortical areas are deactivated during vection varies from one study to another. The main question in this study is whether such deactivation depends on the visual-vestibular conflict induced by visual motion. A visual motion about the line of sight (roll motion) induces a visual-canal conflict in upright and supine observers. An additional visual-otolith conflict arises in the upright position only, with the graviceptive inputs indicating that the head is stationary. A 96-channel electroencephalogram (EEG) was recorded in 21 participants exposed to roll motion in seated and supine positions. Meanwhile, perceptual state of self-motion was recorded. Results showed a transient decrease in the cortical sensorimotor networks' alpha activity at the onset of vection whatever the participant's position, and therefore the visual-vestibular conflict. During vection, an increase in alpha activity over parieto-occipital areas was observed in the upright condition, that is, in a condition of visual-otolith conflict. The modulation of alpha activity may be predictive of the illusion of self-motion but also may reflect the level of inhibition in the sensorimotor networks needed to reduce potential interference from vestibular conflicting inputs.NEW & NOTEWORTHY For the first time, we explored the neural correlates of different visuo-vestibular conflicts induced by visual motion using EEG. Our study highlighted a neuronal signature for illusory self-motion (vection) in the sensorimotor networks. Strong alpha activity may predict successful vection but also reflects the level of inhibition of sensorimotor networks needed to reduce potential interfering vestibular inputs. These findings would be of prime importance for simulator and virtual reality systems that induce vection.


Assuntos
Ritmo alfa/fisiologia , Eletroencefalografia , Cinestesia/fisiologia , Percepção de Movimento/fisiologia , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Vestíbulo do Labirinto/fisiologia , Adolescente , Adulto , Conflito Psicológico , Feminino , Humanos , Masculino , Postura Sentada , Decúbito Dorsal/fisiologia , Adulto Jovem
17.
Neurophysiol Clin ; 49(5): 371-375, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31761447

RESUMO

The safety and efficacy of neuronavigated intermittent theta burst stimulation (iTBS) in patients with bipolar depression has not yet been investigated. We hypothesized the superiority of active iTBS over sham. Twenty-six patients were randomly allocated to receive either active (n=12) or sham (n=14) iTBS. Response and remission rates according to changes in depression MADRS score were high following active iTBS (72% and 42% for response and remission rates, respectively), but no significant difference was found after sham stimulation (42%and 25%). No adverse events were observed. This study revealed the safety and tolerability of twice daily iTBS in patients with bipolar depression. Larger controlled studies are warranted to prove iTBS superiority in treatment-resistant bipolar depression.


Assuntos
Transtorno Bipolar/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Projetos Piloto , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento , Adulto Jovem
19.
Front Behav Neurosci ; 11: 231, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375330

RESUMO

Recent research suggests that conceptual or emotional factors could influence the perceptual processing of stimuli. In this article, we aimed to evaluate the effect of social information (positive, negative, or no information related to the character of the target) on subjective (perceived and felt valence and arousal), physiological (facial mimicry) as well as on neural (P100 and N170) responses to dynamic emotional facial expressions (EFE) that varied from neutral to one of the six basic emotions. Across three studies, the results showed reduced ratings of valence and arousal of EFE associated with incongruent social information (Study 1), increased electromyographical responses (Study 2), and significant modulation of P100 and N170 components (Study 3) when EFE were associated with social (positive and negative) information (vs. no information). These studies revealed that positive or negative social information reduces subjective responses to incongruent EFE and produces a similar neural and physiological boost of the early perceptual processing of EFE irrespective of their congruency. In conclusion, the article suggests that the presence of positive or negative social context modulates early physiological and neural activity preceding subsequent behavior.

20.
Neuroimage ; 135: 115-24, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153976

RESUMO

Brain dynamics at rest depend on the large-scale interactions between oscillating cortical microcircuits arranged into macrocolumns. Cytoarchitectonic studies have shown that the structure of those microcircuits differs between cortical regions, but very little is known about interregional differences of their intrinsic dynamics at a macro-scale in human. We developed here a new method aiming at mapping the dynamical properties of cortical microcircuits non-invasively using the coupling between robotized transcranial magnetic stimulation and electroencephalography. We recorded the responses evoked by the stimulation of 18 cortical targets largely covering the accessible neocortex in 22 healthy volunteers. Specific data processing methods were developed to map the local source activity of each cortical target, which showed inter-regional differences with very good interhemispheric reproducibility. Functional signatures of cortical microcircuits were further studied using spatio-temporal decomposition of local source activities in order to highlight principal brain modes. The identified brain modes revealed that cortical areas with similar intrinsic dynamical properties could be distributed either locally or not, with a spatial signature that was somewhat reminiscent of resting state networks. Our results provide the proof of concept of "functional cytoarchitectonics", that would guide the parcellation of the human cortex using not only its cytoarchitecture but also its intrinsic responses to local perturbations. This opens new avenues for brain modelling and physiopathology readouts.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Robótica/métodos , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...