Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Theranostics ; 9(20): 5976-6001, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534532

RESUMO

Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Cisplatino/toxicidade , Galectina 3/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Receptor 2 Toll-Like/metabolismo , Injúria Renal Aguda/genética , Animais , Células Cultivadas , Citometria de Fluxo , Galectina 3/genética , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/genética , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/genética
2.
Stem Cells Int ; 2019: 4236973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191672

RESUMO

During acute or chronic lung injury, inappropriate immune response and/or aberrant repair process causes irreversible damage in lung tissue and most usually results in the development of fibrosis followed by decline in lung function. Inhaled corticosteroids and other anti-inflammatory drugs are very effective in patients with inflammatory lung disorders, but their long-term use is associated with severe side effects. Accordingly, new therapeutic agents that will attenuate ongoing inflammation and, at the same time, promote regeneration of injured alveolar epithelial cells are urgently needed. Mesenchymal stem cells (MSCs) are able to modulate proliferation, activation, and effector function of all immune cells that play an important role in the pathogenesis of acute and chronic inflammatory lung diseases. In addition to the suppression of lung-infiltrated immune cells, MSCs have potential to differentiate into alveolar epithelial cells in vitro and, accordingly, represent new players in cell-based therapy of inflammatory lung disorders. In this review article, we described molecular mechanisms involved in MSC-based therapy of acute and chronic pulmonary diseases and emphasized current knowledge and future perspectives related to the therapeutic application of MSCs in patients suffering from acute respiratory distress syndrome, pneumonia, asthma, chronic obstructive pulmonary diseases, and idiopathic pulmonary fibrosis.

3.
Adv Exp Med Biol ; 1084: 187-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31175638

RESUMO

Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.


Assuntos
Células-Tronco Mesenquimais , Fator de Células-Tronco , Anti-Inflamatórios/farmacologia , Meios de Cultivo Condicionados , Imunomodulação/efeitos dos fármacos , Imunossupressores/farmacologia , Células-Tronco Mesenquimais/química , Fator de Células-Tronco/química , Fator de Células-Tronco/farmacologia
4.
J Biomed Sci ; 26(1): 25, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30866950

RESUMO

BACKGROUND: Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents. However, its clinical use is limited due to the severe side effects, including nephrotoxicity and acute kidney injury (AKI) which develop due to renal accumulation and biotransformation of CDDP. The alleviation or prevention of CDDP-caused nephrotoxicity is currently accomplished by hydration, magnesium supplementation or mannitol-induced forced diuresis which is considered for high-dose CDDP-treated patients. However, mannitol treatment causes over-diuresis and consequent dehydration in CDDP-treated patients, indicating an urgent need for the clinical use of safe and efficacious renoprotective drug as an additive therapy for high dose CDDP-treated patients. MAIN BODY: In this review article we describe in detail signaling pathways involved in CDDP-induced apoptosis of renal tubular cells, oxidative stress and inflammatory response in injured kidneys in order to pave the way for the design of new therapeutic approaches that can minimize CDDP-induced nephrotoxicity. Most of these molecular pathways are, at the same time, crucially involved in cytotoxic activity of CDDP against tumor cells and potential alterations in their function might mitigate CDDP-induced anti-tumor effects. CONCLUSION: Despite the fact that many molecules were designated as potential therapeutic targets for renoprotection against CDDP, modulation of CDDP-induced nephrotoxicity still represents a balance on the knife edge between renoprotection and tumor toxicity.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Células Epiteliais/efeitos dos fármacos , Rim/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Humanos , Inflamação/induzido quimicamente , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ratos
5.
Biomed Pharmacother ; 109: 2318-2326, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551490

RESUMO

Osteoarthritis (OA) is a chronic, prevalent, debilitating joint disease characterized by progressive cartilage degradation, subchondral bone remodeling, bone marrow lesions, meniscal damage, and synovitis. Innate immune cells (natural killer cells, macrophages, and mast cells) play the most important pathogenic role in the early inflammatory response, while cells of adaptive immunity (CD4 + Th1 lymphocytes and antibody producing B cells) significantly contribute to the development of chronic, relapsing course of inflammation in OA patients. Conventional therapy for OA is directed toward symptomatic treatment, mainly pain management, and is not able to promote regeneration of degenerated cartilage or to attenuate joint inflammation. Since articular cartilage, intra-articular ligaments, and menisci have no ability to heal, regeneration of these tissues remains one of the most important goals of new therapeutic approaches used for OA treatment. Due to their capacity for differentiation into chondrocytes and due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have been the most extensively explored as new therapeutic agents in the cell-based therapy of OA. Simple acquisition, rapid proliferation, maintenance of differentiation potential after repeated passages in vitro, minor immunological rejection due to the low surface expression of major histocompatibility complex antigens, efficient engraftment and long-term coexistence in the host are the main characteristics of MSCs that enable their therapeutic use in OA. In this review article, we emphasized current knowledge and future perspectives regarding molecular and cellular mechanisms responsible for beneficial effects of autologous and allogeneic MSCs in the treatment of OA.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite/imunologia , Osteoartrite/terapia , Animais , Cartilagem Articular/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Condrócitos/imunologia , Condrócitos/transplante , Previsões , Humanos , Transplante de Células-Tronco Mesenquimais/tendências
6.
Stem Cells Int ; 2019: 7869130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949441

RESUMO

Glaucoma represents a group of progressive optic neuropathies characterized by gradual loss of retinal ganglion cells (RGCs), the neurons that conduct visual information from the retina to the brain. Elevated intraocular pressure (IOP) is considered the main reason for enhanced apoptosis of RGCs in glaucoma. Currently used therapeutic agents are not able to repopulate and/or regenerate injured RGCs and, therefore, are ineffective in most patients with advanced glaucoma. Accordingly, several new therapeutic approaches, including stem cell-based therapy, have been explored for the glaucoma treatment. In this review article, we emphasized current knowledge regarding molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cells (MSCs) and their secretome in the treatment of glaucoma. MSCs produce neurotrophins and in an exosome-dependent manner supply injured RGCs with growth factors enhancing their survival and regeneration. Additionally, MSCs are able to generate functional RGC-like cells and induce proliferation of retinal stem cells. By supporting integrity of trabecular meshwork, transplanted MSCs alleviate IOP resulting in reduced loss of RGCs. Moreover, MSCs are able to attenuate T cell-driven retinal inflammation providing protection to the injured retinal tissue. In summing up, due to their capacity for neuroprotection and immunomodulation, MSCs and their secretome could be explored in upcoming clinical studies as new therapeutic agents for glaucoma treatment.

7.
Therap Adv Gastroenterol ; 11: 1756284818815334, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574192

RESUMO

Indoleamine 2,3-dioxygenase (IDO) has the most important role in modulation of tryptophan-dependent effects in the gastrointestinal tract, including modulation of intestinal immune response. An increased IDO activity maintains immune tolerance and attenuates ongoing inflammation but allows immune escape and uncontrolled growth of gastrointestinal tumors. Accordingly, IDO represents a novel therapeutic target for the treatment of inflammatory and malignant diseases of the gastrointestinal tract. In this review article, we summarize current knowledge about molecular and cellular mechanisms that are involved in IDO-dependent effects. We provide a brief outline of experimental and clinical studies that increased our understanding of how enhanced IDO activity: controls host-microbiota interactions in the gut; regulates detrimental immune response in inflammatory disorders of the gastrointestinal system; and allows immune escape and uncontrolled growth of gastrointestinal tumors. Additionally, we present future perspectives regarding modulation of IDO activity in the gut as possible new therapeutic approaches for the treatment of inflammatory and malignant diseases of the gastrointestinal system.

8.
Therap Adv Gastroenterol ; 11: 1756284818793558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159037

RESUMO

BACKGROUND: Dendritic cell (DC)-derived indolamine 2,3-dioxygenase (IDO) degrades tryptophan to kynurenine, which promotes conversion of inflammatory T cells in immunosuppressive regulatory T cells (Tregs). We analyzed the significance of the IDO:Treg axis for inducing and maintaining mucosal healing in ulcerative colitis (UC). METHODS: Dextran sodium sulphate (DSS)-induced colitis in BALB/c mice (model for mucosal healing) and C57BL/6 mice (model for persistent disease) was used. Serum, fecal samples and colon-infiltrating immune cells of 65 patients with UC with mucosal healing or persistent colitis were analyzed. RESULTS: Significantly higher serum levels of kynurenine and downregulated inflammatory cytokines were noticed in DSS-treated BALB/c mice compared with C57BL/6 mice. Increased IDO activity and attenuated capacity for antigen presentation and production of inflammatory cytokines, observed in BALB/c DCs, was followed by a significantly lower number of inflammatory T helper 1 (Th1) and Th17 cells and a notably increased number of Tregs in the colons of DSS-treated BALB/c mice. DCs and Tregs were crucially important for the maintenance of mucosal healing since their depletion aggravated colitis. Mucosal healing, followed by an increase in kynurenine and intestinal Tregs, was re-established when BALB/c DCs were transferred into DC-depleted or Treg-depleted DSS-treated BALB/c mice. This phenomenon was completely abrogated by the IDO inhibitor. Significantly higher serum and fecal levels of kynurenine, accompanied by an increased presence of intestinal Tregs, were noticed in patients with UC with mucosal healing and negatively correlated with disease severity, fecal calprotectin, colon-infiltrating interferon γ and interleukin-17-producing cells, serum and fecal levels of inflammatory cytokines. CONCLUSION: IDO-dependent expansion of endogenous Tregs should be further explored as a new approach for the induction and maintenance of mucosal healing in patients with UC.

9.
Adv Exp Med Biol ; 1089: 47-57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774506

RESUMO

Mesenchymal stem cells (MSCs) were, due to their immunomodulatory and pro-angiogenic characteristics, extensively explored as new therapeutic agents in cell-based therapy of uveitis, glaucoma, retinal and ocular surface diseases.Since it was recently revealed that exosomes play an important role in biological functions of MSCs, herewith we summarized current knowledge about the morphology, structure, phenotype and functional characteristics of MSC-derived exosomes emphasizing their therapeutic potential in the treatment of eye diseases.MSC-derived exosomes were as efficient as transplanted MSCs in limiting the extent of eye injury and inflammation. Immediately after intravitreal injection, MSC-derived exosomes, due to nano-dimension, diffused rapidly throughout the retina and significantly attenuated retinal damage and inflammation. MSC-derived exosomes successfully delivered trophic and immunomodulatory factors to the inner retina and efficiently promoted survival and neuritogenesis of injured retinal ganglion cells. MSC-derived exosomes efficiently suppressed migration of inflammatory cells, attenuated detrimental Th1 and Th17 cell-driven immune response and ameliorated experimental autoimmune uveitis. MSC-derived exosomes were able to fuse with the lysosomes within corneal cells, enabling delivering of MSC-derived active ß-glucuronidase and consequent catabolism of accumulated glycosaminoglycans, indicating their therapeutic potential in the treatment of Mucopolysaccharidosis VII (Sly Syndrome). Importantly, beneficent effects were noticed only in animals that received MSC-derived exosomes and were not seen after therapy with fibroblasts-derived exosomes confirming specific therapeutic potential of MSCs and their products in the treatment of eye diseases.In conclusion, MSC-derived exosomes represent potentially new therapeutic agents in the therapy of degenerative and inflammatory ocular diseases.


Assuntos
Exossomos/transplante , Oftalmopatias/terapia , Células-Tronco Mesenquimais/citologia , Animais , Fibroblastos , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais
10.
Brain Behav Immun ; 73: 340-351, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29787857

RESUMO

Diseases, disorders, and insults of aging are frequently studied in otherwise healthy animal models despite rampant co-morbidities and exposures among the human population. Stressor exposures can increase neuroinflammation and augment the inflammatory response following a challenge. The impact of dietary exposure on baseline neural function and behavior has gained attention; in particular, a diet high in fructose can increase activation of the hypothalamic-pituitary-adrenal axis and alter behavior. The current study considers the implications of a diet high in fructose for neuroinflammation and outcomes following the cerebrovascular challenge of stroke. Ischemic injury may come as a "second hit" to pre-existing metabolic pathology, exacerbating inflammatory and behavioral sequelae. This study assesses the neuroinflammatory consequences of a peri-adolescent high-fructose diet model and assesses the impact of diet-induced metabolic dysfunction on behavioral and neuropathological outcomes after middle cerebral artery occlusion. We demonstrate that consumption of a high-fructose diet initiated during adolescent development increases brain complement expression, elevates plasma TNFα and serum corticosterone, and promotes depressive-like behavior. Despite these adverse effects of diet exposure, peri-adolescent fructose consumption did not exacerbate neurological behaviors or lesion volume after middle cerebral artery occlusion.


Assuntos
Depressão/etiologia , Depressão/metabolismo , Frutose/efeitos adversos , Fatores Etários , Animais , Comportamento Animal/fisiologia , Encéfalo/patologia , Corticosterona/análise , Corticosterona/sangue , Depressão/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Frutose/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Neuroimunomodulação/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos , Ratos Wistar , Estresse Psicológico/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
11.
Biomed Pharmacother ; 104: 404-410, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29787987

RESUMO

Due to their trophic and immunoregulatory characteristics mesenchymal stem cells (MSCs) have tremendous potential for use in a variety of clinical applications. Challenges in MSCs' clinical applications include low survival of transplanted cells and low grafting efficiency requiring use of a high number of MSCs to achieve therapeutic benefits. Accordingly, new approaches are urgently needed in order to overcome these limitations. Recent evidence indicates that modulation of autophagy in MSCs prior to their transplantation enhances survival and viability of engrafted MSCs and promotes their pro-angiogenic and immunomodulatory characteristics. Here, we review the current literature describing mechanisms by which modulation of autophagy strengthens pro-angiogenic and immunosuppressive characteristics of MSCs in animal models of multiple sclerosis, osteoporosis, diabetic limb ischemia, myocardial infarction, acute graft-versus-host disease, kidney and liver diseases. Obtained results suggest that modulation of autophagy in MSCs may represent a new therapeutic approach that could enhance efficacy of MSCs in the treatment of ischemic and autoimmune diseases.


Assuntos
Doenças Autoimunes/terapia , Autofagia/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
12.
Liver Transpl ; 24(5): 687-702, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29500914

RESUMO

One of the therapeutic options for the treatment of fulminant hepatitis is repopulation of intrahepatic regulatory cells because their pool is significantly reduced during acute liver failure. Although it is known that mesenchymal stem cells (MSCs), which have beneficent effects in the therapy of fulminant hepatitis, may promote expansion of regulatory T cells (Tregs) and regulatory B cells (Bregs), the role of these regulatory cells in MSC-mediated attenuation of acute liver injury is unknown. Herewith, we described the molecular mechanisms involved in the crosstalk between MSCs and liver regulatory cells and analyzed the potential of MSC-based therapy for the expansion of intrahepatic regulatory cells in mouse model of acute liver failure. MSC-dependent attenuation of α-galactosylceramide (α-GalCer)-induced acute liver injury in mice was accompanied with an increased presence of interleukin (IL) 10-producing CD4+ CD25+ forkhead box P3+ Tregs and IL10- and transforming growth factor ß-producing marginal zone-like Bregs in the liver. Depletion of Bregs did not alter MSC-based alleviation of acute liver failure, whereas depletion of Tregs completely abrogated hepatoprotective effects of MSCs and inhibited their capacity to attenuate hepatotoxicity of liver natural killer T cells (NKTs), indicating that Tregs, and not Bregs, were critically involved in MSC-based modulation of acute liver inflammation. MSCs, in a paracrine, indoleamine 2,3-dioxygenase-dependent manner, significantly increased the capacity of Tregs to produce immunosuppressive IL10 and to suppress hepatotoxicity of liver NKTs. Accordingly, adoptive transfer of MSC-primed Tregs resulted in the complete attenuation of α-GalCer-induced acute liver failure. In conclusion, our findings highlighted the crucial importance of Tregs for MSC-based attenuation of acute liver failure and indicated the significance of MSC-mediated priming of Tregs as a new therapeutic approach in Treg-based therapy of acute liver injury. Liver Transplantation 24 687-702 2018 AASLD.


Assuntos
Transferência Adotiva , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/imunologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Comunicação Parácrina , Linfócitos T Reguladores/transplante , Animais , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Galactosilceramidas , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Fígado/metabolismo , Fígado/patologia , Ativação Linfocitária , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
13.
Int J Mol Sci ; 19(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601528

RESUMO

Spinal cord injury (SCI), a serious public health issue, most likely occurs in previously healthy young adults. Current therapeutic strategies for SCI includes surgical decompression and pharmacotherapy, however, there is still no gold standard for the treatment of this devastating condition. Inefficiency and adverse effects of standard therapy indicate that novel therapeutic strategies are required. Because of their neuroregenerative and neuroprotective properties, stem cells are a promising tool for the treatment of SCI. Herein, we summarize and discuss the promising therapeutic potential of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and ependymal stem/progenitor cells (epSPC) for SCI.


Assuntos
Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Traumatismos da Medula Espinal/metabolismo
14.
J Biomed Sci ; 25(1): 21, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29519245

RESUMO

BACKGROUND: Pericytes are multipotent cells present in every vascularized tissue in the body. Despite the fact that they are well-known for more than a century, pericytes are still representing cells with intriguing properties. This is mainly because of their heterogeneity in terms of definition, tissue distribution, origin, phenotype and multi-functional properties. The body of knowledge illustrates importance of pericytes in the regulation of homeostatic and healing processes in the body. MAIN BODY: In this review, we summarized current knowledge regarding identification, isolation, ontogeny and functional characteristics of pericytes and described molecular mechanisms involved in the crosstalk between pericytes and endothelial or immune cells. We highlighted the role of pericytes in the pathogenesis of fibrosis, diabetes-related complications (retinopathy, nephropathy, neuropathy and erectile dysfunction), ischemic organ failure, pulmonary hypertension, Alzheimer disease, tumor growth and metastasis with the focus on their therapeutic potential in the regenerative medicine. The functions and capabilities of pericytes are impressive and, as yet, incompletely understood. Molecular mechanisms responsible for pericyte-mediated regulation of vascular stability, angiogenesis and blood flow are well described while their regenerative and immunomodulatory characteristics are still not completely revealed. Strong evidence for pericytes' participation in physiological, as well as in pathological conditions reveals a broad potential for their therapeutic use. Recently published results obtained in animal studies showed that transplantation of pericytes could positively influence the healing of bone, muscle and skin and could support revascularization. However, the differences in their phenotype and function as well as the lack of standardized procedure for their isolation and characterization limit their use in clinical trials. CONCLUSION: Critical to further progress in clinical application of pericytes will be identification of tissue specific pericyte phenotype and function, validation and standardization of the procedure for their isolation that will enable establishment of precise clinical settings in which pericyte-based therapy will be efficiently applied.


Assuntos
Progressão da Doença , Pericitos/fisiologia , Medicina Regenerativa/métodos , Animais , Humanos , Pericitos/classificação , Pericitos/metabolismo
15.
Int J Med Sci ; 15(3): 274-279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483819

RESUMO

The standard sterilization method for most medical devices over the past 40 years involves gamma irradiation. During sterilization, gamma rays efficiently eliminate microorganisms from the medical devices and tissue allografts, but also significantly change molecular structure of irradiated products, particularly fragile biologics such as cytokines, chemokines and growth factors. Accordingly, gamma radiation significantly alters biomechanical properties of bone, tendon, tracheal, skin, amnion tissue grafts and micronized amniotic membrane injectable products. Similarly, when polymer medical devices are sterilized by gamma radiation, their physico-chemical characteristics undergo modification significantly affecting their clinical use. Several animal studies demonstrated that consummation of irradiated food provoked genome instability raising serious concerns regarding oncogenic potential of irradiated consumables. These findings strongly suggest that new, long-term, prospective clinical studies should be conducted in near future to investigate whether irradiated food is safe for human consumption. In this review, we summarized current knowledge regarding molecular mechanisms responsible for deleterious effects of gamma radiation with focusing on its significance for food safety and biomechanical characteristics of medical devices, and tissue allografts, especially injectable biologics.


Assuntos
Armazenamento de Alimentos , Raios gama/efeitos adversos , Polímeros/efeitos da radiação , Esterilização , Animais , Equipamentos e Provisões , Instabilidade Genômica/efeitos dos fármacos , Humanos , Polímeros/efeitos adversos , Polímeros/química
16.
Biomed Pharmacother ; 100: 426-432, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29471245

RESUMO

Dendritic cells (DCs) have important pathogenic role in the induction and progression of ulcerative colitis (UC), but their role in mesenchymal stem cells (MSCs)-mediated suppression of colon injury and inflammation is not revealed. By using dextran sodium sulfate (DSS)-induced colitis, a well-established murine model of UC, we examined effects of MSCs on phenotype and function of colon infiltrating DCs. Clinical, histological, immunophenotypic analysis and passive transfer of MSCs-primed DCs were used to evaluate capacity of MSC to suppress inflammatory phenotype of DCs in vivo. Additionally, DCs:MSCs interplay was also investigated in vitro, to confirmed in vivo obtained findings. Intraperitoneally administered MSCs (2 × 106) significantly reduced progression of DSS-induced colitis and reduced serum levels of inflammatory cytokines (IL-1ß, IL-12, and IL-6). Passive transfer of in vivo MSCs-primed DCs reduced severity of colitis while passive transfer of MSCs-non-primed DCs aggravated DSS-induced colitis. Through the secretion of immunomodulatory Galectin 3, MSCs, in paracrine manner, down-regulated production of inflammatory cytokines in DCs and attenuated expression of co-stimulatory and major histocompatibility complex class II molecules on their membranes. Taken together, these results indicate that MSCs achieved their beneficial effects in DSS-induced colitis by suppressing inflammatory phenotype of DCs in Gal-3 dependent manner. Therapeutic targeting of DCs by MSCs should be explored in future studies as a useful approach for the treatment of UC.


Assuntos
Colite/imunologia , Colite/terapia , Células Dendríticas/imunologia , Sulfato de Dextrana/toxicidade , Transplante de Células-Tronco Mesenquimais/métodos , Doença Aguda , Animais , Colite/induzido quimicamente , Células Dendríticas/efeitos dos fármacos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL
17.
Stem Cell Rev Rep ; 14(2): 153-165, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29177796

RESUMO

Mesenchymal stem cells (MSCs) are promising resource for the therapy of inflammatory bowel diseases (IBDs) on the grounds of their differentiation capabilities and immuno-modulatory characteristics. Results of clinical studies indicate that local application of MSCs is a secure and beneficial approach for the treatment of perianal fistulas while systemic application of MSCs leads to the attenuation or aggravation of IBDs. Herein, we emphasized molecular mechanisms and approaches that should improve efficacy of MSC-based therapy of IBDs.


Assuntos
Doenças Inflamatórias Intestinais/terapia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Transplante de Células-Tronco Mesenquimais
18.
Cancer Epidemiol Biomarkers Prev ; 26(1): 75-84, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655898

RESUMO

BACKGROUND: Early-life socioeconomic status (SES) may play a role in cancer risk in adulthood. However, measuring SES retrospectively presents challenges. Parental occupation on the birth certificate is a novel method of ascertaining early-life SES that has not been applied in cancer epidemiology. METHODS: For a Baby-Boom cohort born from 1945-1959 in two Utah counties, individual-level Nam-Powers SES (Np-SES) was derived from parental industry/occupation reported on birth certificates. Neighborhood SES was estimated from average household income of census tract at birth. Cancer incidence was determined by linkage to Utah Cancer Registry records through the Utah Population Database. Hazard ratios (HR) for cancer risk by SES quartile were estimated using Cox proportional hazards regression. RESULTS: Females with low Np-SES at birth had lower risk of breast cancer compared with those in the highest Np-SES group [HRQ1/Q4 = 0.83; 95% confidence interval (CI), 0.72-0.97; HRQ2/Q4 = 0.81; 95% CI, 0.69-0.96]. Np-SES was inversely associated with melanoma (HRQ1/Q4 = 0.81; 95% CI, 0.67-0.98) and prostate cancer (HRQ1/Q4 = 0.70; 95% CI, 0.56-0.88). Women born into lower SES neighborhoods had significantly increased risk for invasive cervical cancer (HRQ1/Q4 = 1.44; 95% CI, 1.12-1.85; HRQ2/Q4 = 1.33; 95% CI, 1.04-1.72). Neighborhood SES had similar effects for melanoma and prostate cancers, but was not associated with female breast cancer. We found no association with SES for pancreas, lung, and colon and rectal cancers. CONCLUSIONS: Individual SES derived from parental occupation at birth was associated with altered risk for several cancer sites. IMPACT: This novel methodology can contribute to improved understanding of the role of early-life SES on cancer risk. Cancer Epidemiol Biomarkers Prev; 26(1); 75-84. ©2016 AACR.


Assuntos
Neoplasias/epidemiologia , Crescimento Demográfico , Sistema de Registros , Fatores Socioeconômicos , Adulto , Fatores Etários , Declaração de Nascimento , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Prevalência , Modelos de Riscos Proporcionais , Características de Residência , Estudos Retrospectivos , Medição de Risco , Fatores Sexuais , Utah/epidemiologia , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/epidemiologia
19.
Anal Cell Pathol (Amst) ; 2017: 7492836, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29410945

RESUMO

Primary biliary cholangitis (PBC) is a chronic autoimmune cholestatic liver disease characterized by the progressive destruction of small- and medium-sized intrahepatic bile ducts with resultant cholestasis and progressive fibrosis. Ursodeoxycholic acid and obethicholic acid are the only agents approved by the US Food and Drug Administration (FDA) for the treatment of PBC. However, for patients with advanced, end-stage PBC, liver transplantation is still the most effective treatment. Accordingly, the alternative approaches, such as mesenchymal stem cell (MSC) transplantation, have been suggested as an effective alternative therapy for these patients. Due to their immunomodulatory characteristics, MSCs are considered as promising therapeutic agents for the therapy of autoimmune liver diseases, including PBC. In this review, we have summarized the therapeutic potential of MSCs for the treatment of these diseases, emphasizing molecular and cellular mechanisms responsible for MSC-based effects in an animal model of PBC and therapeutic potential observed in recently conducted clinical trials. We have also presented several outstanding problems including safety issues regarding unwanted differentiation of transplanted MSCs which limit their therapeutic use. Efficient and safe MSC-based therapy for PBC remains a challenging issue that requires continuous cooperation between clinicians, researchers, and patients.


Assuntos
Doenças Biliares/terapia , Colangite/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos
20.
Physiol Behav ; 166: 43-55, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26454211

RESUMO

The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant.


Assuntos
Metabolismo Energético/fisiologia , Doenças Metabólicas/complicações , Sistemas Neurossecretores/fisiopatologia , Estresse Psicológico/complicações , Animais , Glucocorticoides/metabolismo , Humanos , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...