Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 4: 170046, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398288

RESUMO

This paper presents datasets that enable historical longitudinal studies of micro-level geographic factors in a rural setting. These types of datasets are new, as historical demography studies have generally failed to properly include the micro-level geographic factors. Our datasets describe the geography over five Swedish rural parishes, and by linking them to a longitudinal demographic database, we obtain a geocoded population (at the property unit level) for this area for the period 1813-1914. The population is a subset of the Scanian Economic Demographic Database (SEDD). The geographic information includes the following feature types: property units, wetlands, buildings, roads and railroads. The property units and wetlands are stored in object-lifeline time representations (information about creation, changes and ends of objects are recorded in time), whereas the other feature types are stored as snapshots in time. Thus, the datasets present one of the first opportunities to study historical spatio-temporal patterns at the micro-level.

2.
Springerplus ; 5: 267, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27006876

RESUMO

The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.

3.
Int J Health Geogr ; 6: 19, 2007 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-17547740

RESUMO

BACKGROUND: This study is part of several ongoing projects concerning epidemiological research into the effects on health of exposure to air pollutants in the region of Scania, southern Sweden. The aim is to investigate the optimal spatial resolution, with respect to temporal resolution, for a pollutant database of NOx-values which will be used mainly for epidemiological studies with durations of days, weeks or longer periods. The fact that a pollutant database has a fixed spatial resolution makes the choice critical for the future use of the database. RESULTS: The results from the study showed that the accuracy between the modelled concentrations of the reference grid with high spatial resolution (100 m), denoted the fine grid, and the coarser grids (200, 400, 800 and 1600 meters) improved with increasing spatial resolution. When the pollutant values were aggregated in time (from hours to days and weeks) the disagreement between the fine grid and the coarser grids were significantly reduced. The results also illustrate a considerable difference in optimal spatial resolution depending on the characteristic of the study area (rural or urban areas). To estimate the accuracy of the modelled values comparison were made with measured NOx values. The mean difference between the modelled and the measured value were 0.6 mug/m3 and the standard deviation 5.9 mug/m3 for the daily difference. CONCLUSION: The choice of spatial resolution should not considerably deteriorate the accuracy of the modelled NOx values. Considering the comparison between modelled and measured values we estimate that an error due to coarse resolution greater than 1 mug/m3 is inadvisable if a time resolution of one day is used. Based on the study of different spatial resolutions we conclude that for urban areas a spatial resolution of 200-400 m is suitable; and for rural areas the spatial resolution could be coarser (about 1600 m). This implies that we should develop a pollutant database that allows different spatial resolution for urban and rural areas.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Monitoramento Ambiental/normas , Sistemas de Informação Geográfica , Óxido Nitroso/análise , Simulação por Computador , Bases de Dados como Assunto , Demografia , Projetos de Pesquisa Epidemiológica , Humanos , Mapas como Assunto , Saúde da População Rural , Suécia , Fatores de Tempo , Saúde da População Urbana
4.
Int J Health Geogr ; 4: 30, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16288656

RESUMO

BACKGROUND: Numerous studies have shown that exposure to air pollutants in the area of residence and the socio-economic status of an individual may be related. Therefore, when conducting an epidemiological study on the health effect of air pollution, socio-economy may act as a confounding factor. In this paper we examine to what extent socio-economic status and concentrations of NO2 in the county/region of Scania, southern Sweden, are associated and if such associations between these factors differ when studying them at county or city level. To perform this study we used high-resolution census data and modelled the annual exposure to NO2 using an emission database, a dispersion modelling program and a geographical information system (GIS). RESULTS: The results from this study confirm that socio-economic status and the levels of NO2 in the area of residence are associated in some cities. The associations vary considerably between cities within the same county (Scania). Even for cities of similar sizes and population bases the associations observed are different. Studying the cities together or separately yields contradictory results, especially when education is used as a socio-economic indicator. CONCLUSION: Four conclusions have been drawn from the results of this study. 1) Adjusting for socio-economy is important when investigating the health effects of air pollution. 2) The county of Scania seems to be heterogeneous regarding the association between air pollution and socio-economy. 3) The relationship between air pollution and socio-economy differs in the five cities included in our study, depending on whether they are analysed separately or together. It is therefore inadvisable to determine and analyse associations between socio-economy and exposure to air pollutants on county level. This study indicates that the size and choice of study area is of great importance. 4) The selection of socio-economic indices (in this study: country of birth and education level) is important.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...