Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8018): 943-949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898271

RESUMO

Spatial transcriptomics measures in situ gene expression at millions of locations within a tissue1, hitherto with some trade-off between transcriptome depth, spatial resolution and sample size2. Although integration of image-based segmentation has enabled impactful work in this context, it is limited by imaging quality and tissue heterogeneity. By contrast, recent array-based technologies offer the ability to measure the entire transcriptome at subcellular resolution across large samples3-6. Presently, there exist no approaches for cell type identification that directly leverage this information to annotate individual cells. Here we propose a multiscale approach to automatically classify cell types at this subcellular level, using both transcriptomic information and spatial context. We showcase this on both targeted and whole-transcriptome spatial platforms, improving cell classification and morphology for human kidney tissue and pinpointing individual sparsely distributed renal mouse immune cells without reliance on image data. By integrating these predictions into a topological pipeline based on multiparameter persistent homology7-9, we identify cell spatial relationships characteristic of a mouse model of lupus nephritis, which we validate experimentally by immunofluorescence. The proposed framework readily generalizes to new platforms, providing a comprehensive pipeline bridging different levels of biological organization from genes through to tissues.


Assuntos
Células , Perfilação da Expressão Gênica , Espaço Intracelular , Rim , Transcriptoma , Animais , Feminino , Humanos , Camundongos , Células/classificação , Células/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Perfilação da Expressão Gênica/métodos , Rim/citologia , Rim/imunologia , Rim/metabolismo , Rim/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Reprodutibilidade dos Testes , Espaço Intracelular/genética , Espaço Intracelular/metabolismo
2.
J R Soc Interface ; 20(201): 20220727, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37122282

RESUMO

Quantification and classification of protein structures, such as knotted proteins, often requires noise-free and complete data. Here, we develop a mathematical pipeline that systematically analyses protein structures. We showcase this geometric framework on proteins forming open-ended trefoil knots, and we demonstrate that the mathematical tool, persistent homology, faithfully represents their structural homology. This topological pipeline identifies important geometric features of protein entanglement and clusters the space of trefoil proteins according to their depth. Persistence landscapes quantify the topological difference between a family of knotted and unknotted proteins in the same structural homology class. This difference is localized and interpreted geometrically with recent advancements in systematic computation of homology generators. The topological and geometric quantification we find is robust to noisy input data, which demonstrates the potential of this approach in contexts where standard knot theoretic tools fail.


Assuntos
Conformação Proteica , Proteínas , Proteínas/química
4.
Leukemia ; 37(2): 348-358, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470992

RESUMO

The grading of fibrosis in myeloproliferative neoplasms (MPN) is an important component of disease classification, prognostication and monitoring. However, current fibrosis grading systems are only semi-quantitative and fail to fully capture sample heterogeneity. To improve the quantitation of reticulin fibrosis, we developed a machine learning approach using bone marrow trephine (BMT) samples (n = 107) from patients diagnosed with MPN or a reactive marrow. The resulting Continuous Indexing of Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids MPN subtyping. When combined with megakaryocyte feature analysis, CIF discriminates between the frequently challenging differential diagnosis of essential thrombocythemia (ET) and pre-fibrotic myelofibrosis with high predictive accuracy [area under the curve = 0.94]. CIF also shows promise in the identification of MPN patients at risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled in the Primary Thrombocythemia-1 trial identified features predictive of post-ET myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated analysis of fibrosis has clear potential to further refine disease classification boundaries and inform future studies of the micro-environmental factors driving disease initiation and progression in MPN and other stem cell disorders.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Trombocitemia Essencial , Humanos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/patologia , Policitemia Vera/patologia , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/patologia , Medula Óssea/patologia , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/patologia , Fibrose
5.
Bull Math Biol ; 84(12): 137, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36273372

RESUMO

The MEK/ERK signalling pathway is involved in cell division, cell specialisation, survival and cell death (Shaul and Seger in Biochim Biophys Acta (BBA)-Mol Cell Res 1773(8):1213-1226, 2007). Here we study a polynomial dynamical system describing the dynamics of MEK/ERK proposed by Yeung et al. (Curr Biol 2019, https://doi.org/10.1016/j.cub.2019.12.052 ) with their experimental setup, data and known biological information. The experimental dataset is a time-course of ERK measurements in different phosphorylation states following activation of either wild-type MEK or MEK mutations associated with cancer or developmental defects. We demonstrate how methods from computational algebraic geometry, differential algebra, Bayesian statistics and computational algebraic topology can inform the model reduction, identification and parameter inference of MEK variants, respectively. Throughout, we show how this algebraic viewpoint offers a rigorous and systematic analysis of such models.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Cinética , Teorema de Bayes , Fosforilação , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
6.
Entropy (Basel) ; 24(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010781

RESUMO

Analysis of single-cell transcriptomics often relies on clustering cells and then performing differential gene expression (DGE) to identify genes that vary between these clusters. These discrete analyses successfully determine cell types and markers; however, continuous variation within and between cell types may not be detected. We propose three topologically motivated mathematical methods for unsupervised feature selection that consider discrete and continuous transcriptional patterns on an equal footing across multiple scales simultaneously. Eigenscores (eigi) rank signals or genes based on their correspondence to low-frequency intrinsic patterning in the data using the spectral decomposition of the Laplacian graph. The multiscale Laplacian score (MLS) is an unsupervised method for locating relevant scales in data and selecting the genes that are coherently expressed at these respective scales. The persistent Rayleigh quotient (PRQ) takes data equipped with a filtration, allowing the separation of genes with different roles in a bifurcation process (e.g., pseudo-time). We demonstrate the utility of these techniques by applying them to published single-cell transcriptomics data sets. The methods validate previously identified genes and detect additional biologically meaningful genes with coherent expression patterns. By studying the interaction between gene signals and the geometry of the underlying space, the three methods give multidimensional rankings of the genes and visualisation of relationships between them.

7.
Sci Adv ; 8(23): eabm2456, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687679

RESUMO

Advances in imaging techniques enable high-resolution three-dimensional (3D) visualization of vascular networks over time and reveal abnormal structural features such as twists and loops, and their quantification is an active area of research. Here, we showcase how topological data analysis, the mathematical field that studies the "shape" of data, can characterize the geometric, spatial, and temporal organization of vascular networks. We propose two topological lenses to study vasculature, which capture inherent multiscale features and vessel connectivity, and surpass the single-scale analysis of existing methods. We analyze images collected using intravital and ultramicroscopy modalities and quantify spatiotemporal variation of twists, loops, and avascular regions (voids) in 3D vascular networks. This topological approach validates and quantifies known qualitative trends such as dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting; furthermore, it quantifies the effect of radiotherapy on vessel architecture.

8.
Photoacoustics ; 26: 100357, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35574188

RESUMO

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.

9.
Bioinformatics ; 38(9): 2529-2535, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35191485

RESUMO

MOTIVATION: Inferring the parameters of models describing biological systems is an important problem in the reverse engineering of the mechanisms underlying these systems. Much work has focused on parameter inference of stochastic and ordinary differential equation models using Approximate Bayesian Computation (ABC). While there is some recent work on inference in spatial models, this remains an open problem. Simultaneously, advances in topological data analysis (TDA), a field of computational mathematics, have enabled spatial patterns in data to be characterized. RESULTS: Here, we focus on recent work using TDA to study different regimes of parameter space for a well-studied model of angiogenesis. We propose a method for combining TDA with ABC to infer parameters in the Anderson-Chaplain model of angiogenesis. We demonstrate that this topological approach outperforms ABC approaches that use simpler statistics based on spatial features of the data. This is a first step toward a general framework of spatial parameter inference for biological systems, for which there may be a variety of filtrations, vectorizations and summary statistics to be considered. AVAILABILITY AND IMPLEMENTATION: All code used to produce our results is available as a Snakemake workflow from github.com/tt104/tabc_angio.


Assuntos
Algoritmos , Teorema de Bayes , Simulação por Computador
10.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625491

RESUMO

Highly resolved spatial data of complex systems encode rich and nonlinear information. Quantification of heterogeneous and noisy data-often with outliers, artifacts, and mislabeled points-such as those from tissues, remains a challenge. The mathematical field that extracts information from the shape of data, topological data analysis (TDA), has expanded its capability for analyzing real-world datasets in recent years by extending theory, statistics, and computation. An extension to the standard theory to handle heterogeneous data is multiparameter persistent homology (MPH). Here we provide an application of MPH landscapes, a statistical tool with theoretical underpinnings. MPH landscapes, computed for (noisy) data from agent-based model simulations of immune cells infiltrating into a spheroid, are shown to surpass existing spatial statistics and one-parameter persistent homology. We then apply MPH landscapes to study immune cell location in digital histology images from head and neck cancer. We quantify intratumoral immune cells and find that infiltrating regulatory T cells have more prominent voids in their spatial patterns than macrophages. Finally, we consider how TDA can integrate and interrogate data of different types and scales, e.g., immune cell locations and regions with differing levels of oxygenation. This work highlights the power of MPH landscapes for quantifying, characterizing, and comparing features within the tumor microenvironment in synthetic and real datasets.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Macrófagos/citologia , Linfócitos T Reguladores/citologia , Hipóxia Tumoral/fisiologia , Microambiente Tumoral/imunologia , Contagem de Células/métodos , Biologia Computacional/métodos , Simulação por Computador , Análise de Dados , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Macrófagos/imunologia , Esferoides Celulares , Linfócitos T Reguladores/imunologia
11.
PLoS Comput Biol ; 17(6): e1009094, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181657

RESUMO

Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology.


Assuntos
Modelos Cardiovasculares , Neovascularização Patológica , Neovascularização Fisiológica , Algoritmos , Animais , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/fisiologia , Quimiotaxia , Biologia Computacional , Simulação por Computador , Humanos , Neoplasias/irrigação sanguínea , Análise Espaço-Temporal
12.
BMJ Open Qual ; 9(4)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33376105

RESUMO

BACKGROUND: Creatine kinase (CK) testing in the setting of suspected cardiac injury is commonly performed yet rarely provides clinical value beyond troponin testing. We sought to evaluate and reduce CK testing coupled with troponin testing by 50% or greater. METHODS: We performed root cause analysis to study prevailing processes and patterns of CK testing. We developed new institutional guidelines, removed CK from high-volume paper and electronic order bundles and conducted academic detailing for departments with highest ordering frequency. We evaluated consecutive patients at Sunnybrook Health Sciences Centre between 1 January 2018 and 31 March 2020 who had either a CK or troponin level measured. We prespecified successful implementation as a reduction of 50% in total CK orders and a decrease in the ratio of CK-to-troponin tests to one-third or less. We retained additional data beyond our study period to assess for sustained reductions in testing. RESULTS: Total CK tests decreased over the study period from 3963 to 2111 per month, amounting to a 46.7% reduction (95% CI 33.2 to 60.2; p<0.001) equalling 61 fewer tests per hospital day. Troponin testing did not significantly change during the intervention. Ratio of CK-to-troponin tests decreased from 0.91 to 0.49 (p<0.001). The reduction coincided with changes to order-sets, was observed across all clinical units and was sustained during additional months beyond the study period. These reductions in testing resulted in a projected annual cost savings of C$28 446. CONCLUSIONS: We demonstrate that a low-cost and feasible quality improvement initiative may lead to significant reduction in unnecessary CK testing and substantial savings in healthcare costs for patients with suspected cardiac injury.


Assuntos
Creatina Quinase , Cardiopatias , Troponina , Biomarcadores , Cardiopatias/diagnóstico , Humanos
13.
Proc Natl Acad Sci U S A ; 117(33): 19664-19669, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747569

RESUMO

The quest for low-dimensional models which approximate high-dimensional data is pervasive across the physical, natural, and social sciences. The dominant paradigm underlying most standard modeling techniques assumes that the data are concentrated near a single unknown manifold of relatively small intrinsic dimension. Here, we present a systematic framework for detecting interfaces and related anomalies in data which may fail to satisfy the manifold hypothesis. By computing the local topology of small regions around each data point, we are able to partition a given dataset into disjoint classes, each of which can be individually approximated by a single manifold. Since these manifolds may have different intrinsic dimensions, local topology discovers singular regions in data even when none of the points have been sampled precisely from the singularities. We showcase this method by identifying the intersection of two surfaces in the 24-dimensional space of cyclo-octane conformations and by locating all of the self-intersections of a Henneberg minimal surface immersed in 3-dimensional space. Due to the local nature of the topological computations, the algorithmic burden of performing such data stratification is readily distributable across several processors.

14.
Sci Adv ; 6(9): eaay1458, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32133398

RESUMO

Grid diagrams with their relatively simple mathematical formalism provide a convenient way to generate and model projections of various knots. It has been an open question whether these 2D diagrams can be used to model a complex 3D process such as the topoisomerase-mediated preferential unknotting of DNA molecules. We model here topoisomerase-mediated passages of double-stranded DNA segments through each other using the formalism of grid diagrams. We show that this grid diagram-based modeling approach captures the essence of the preferential unknotting mechanism, based on topoisomerase selectivity of hooked DNA juxtapositions as the sites of intersegmental passages. We show that the grid diagram-based approach provides an important, new, and computationally convenient framework for investigating entanglement in biopolymers.


Assuntos
DNA Topoisomerases/química , DNA/química , Modelos Moleculares , Conformação de Ácido Nucleico
15.
Bull Math Biol ; 82(4): 44, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198538

RESUMO

In this paper, we present a framework for investigating coloured noise in reaction-diffusion systems. We start by considering a deterministic reaction-diffusion equation and show how external forcing can cause temporally correlated or coloured noise. Here, the main source of external noise is considered to be fluctuations in the parameter values representing the inflow of particles to the system. First, we determine which reaction systems, driven by extrinsic noise, can admit only one steady state, so that effects, such as stochastic switching, are precluded from our analysis. To analyse the steady-state behaviour of reaction systems, even if the parameter values are changing, necessitates a parameter-free approach, which has been central to algebraic analysis in chemical reaction network theory. To identify suitable models, we use tools from real algebraic geometry that link the network structure to its dynamical properties. We then make a connection to internal noise models and show how power spectral methods can be used to predict stochastically driven patterns in systems with coloured noise. In simple cases, we show that the power spectrum of the coloured noise process and the power spectrum of the reaction-diffusion system modelled with white noise multiply to give the power spectrum of the coloured noise reaction-diffusion system.


Assuntos
Modelos Biológicos , Algoritmos , Animais , Fenômenos Bioquímicos , Padronização Corporal , Simulação por Computador , Biologia do Desenvolvimento , Difusão , Conceitos Matemáticos , Razão Sinal-Ruído , Análise Espaço-Temporal , Processos Estocásticos , Biologia de Sistemas , Teoria de Sistemas
16.
J Math Biol ; 80(6): 1683-1731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32123964

RESUMO

In systems and synthetic biology, much research has focused on the behavior and design of single pathways, while, more recently, experimental efforts have focused on how cross-talk (coupling two or more pathways) or inhibiting molecular function (isolating one part of the pathway) affects systems-level behavior. However, the theory for tackling these larger systems in general has lagged behind. Here, we analyze how joining networks (e.g., cross-talk) or decomposing networks (e.g., inhibition or knock-outs) affects three properties that reaction networks may possess-identifiability (recoverability of parameter values from data), steady-state invariants (relationships among species concentrations at steady state, used in model selection), and multistationarity (capacity for multiple steady states, which correspond to multiple cell decisions). Specifically, we prove results that clarify, for a network obtained by joining two smaller networks, how properties of the smaller networks can be inferred from or can imply similar properties of the original network. Our proofs use techniques from computational algebraic geometry, including elimination theory and differential algebra.


Assuntos
Modelos Biológicos , Transdução de Sinais , Biologia de Sistemas , Animais , Apoptose/fisiologia , Fenômenos Bioquímicos , Humanos , Cinética , Modelos Lineares , Conceitos Matemáticos , Redes e Vias Metabólicas , Biologia Sintética
17.
Curr Biol ; 30(5): 877-882.e6, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32059766

RESUMO

Multisite protein phosphorylation plays a critical role in cell regulation [1-3]. It is widely appreciated that the functional capabilities of multisite phosphorylation depend on the order and kinetics of phosphorylation steps, but kinetic aspects of multisite phosphorylation remain poorly understood [4-6]. Here, we focus on what appears to be the simplest scenario, when a protein is phosphorylated on only two sites in a strict, well-defined order. This scenario describes the activation of ERK, a highly conserved cell-signaling enzyme. We use Bayesian parameter inference in a structurally identifiable kinetic model to dissect dual phosphorylation of ERK by MEK, a kinase that is mutated in a large number of human diseases [7-12]. Our results reveal how enzyme processivity and efficiencies of individual phosphorylation steps are altered by pathogenic mutations. The presented approach, which connects specific mutations to kinetic parameters of multisite phosphorylation mechanisms, provides a systematic framework for closing the gap between studies with purified enzymes and their effects in the living organism.


Assuntos
Ciclo Celular/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação , Animais , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Ratos
18.
J R Soc Interface ; 16(151): 20180661, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958184

RESUMO

We introduce a tensor-based clustering method to extract sparse, low-dimensional structure from high-dimensional, multi-indexed datasets. This framework is designed to enable detection of clusters of data in the presence of structural requirements which we encode as algebraic constraints in a linear program. Our clustering method is general and can be tailored to a variety of applications in science and industry. We illustrate our method on a collection of experiments measuring the response of genetically diverse breast cancer cell lines to an array of ligands. Each experiment consists of a cell line-ligand combination, and contains time-course measurements of the early signalling kinases MAPK and AKT at two different ligand dose levels. By imposing appropriate structural constraints and respecting the multi-indexed structure of the data, the analysis of clusters can be optimized for biological interpretation and therapeutic understanding. We then perform a systematic, large-scale exploration of mechanistic models of MAPK-AKT crosstalk for each cluster. This analysis allows us to quantify the heterogeneity of breast cancer cell subtypes, and leads to hypotheses about the signalling mechanisms that mediate the response of the cell lines to ligands.


Assuntos
Algoritmos , Neoplasias da Mama/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Neoplasias da Mama/patologia , Análise por Conglomerados , Feminino , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Phys Rev E ; 98(1-1): 012318, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110745

RESUMO

We study continuum percolation with disks, a variant of continuum percolation in two-dimensional Euclidean space, by applying tools from topological data analysis. We interpret each realization of continuum percolation with disks as a topological subspace of [0,1]^{2} and investigate its topological features across many realizations. Specifically, we apply persistent homology to investigate topological changes as we vary the number and radius of disks, and we observe evidence that the longest persisting invariant is born at or near the percolation transition.

20.
J R Soc Interface ; 14(137)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29212754

RESUMO

Oscillations in dynamical systems are widely reported in multiple branches of applied mathematics. Critically, even a non-oscillatory deterministic system can produce cyclic trajectories when it is in a low copy number, stochastic regime. Common methods of finding parameter ranges for stochastically driven resonances, such as direct calculation, are cumbersome for any but the smallest networks. In this paper, we provide a systematic framework to efficiently determine the number of resonant modes and parameter ranges for stochastic oscillations relying on real root counting algorithms and graph theoretic methods. We argue that stochastic resonance is a network property by showing that resonant modes only depend on the squared Jacobian matrix J2, unlike deterministic oscillations which are determined by J By using graph theoretic tools, analysis of stochastic behaviour for larger interaction networks is simplified and stochastic dynamical systems with multiple resonant modes can be identified easily.


Assuntos
Modelos Teóricos , Processos Estocásticos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...