Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(27): 278003, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061419

RESUMO

The prediction of flow profiles of slowly sheared granular materials is a major geophysical and industrial challenge. Understanding the role of gravity is particularly important for future planetary exploration in varying gravitational environments. Using the principle of minimization of energy dissipation, and combining experiments and variational analysis, we disentangle the contributions of the gravitational acceleration, confining pressure, and layer thickness on shear strain localization induced by moving fault boundaries at the bottom of a granular layer. The flow profile is independent of the gravity for geometries with a free top surface. However, under a confining pressure or if the sheared layer withstands the weight of the upper layers, increasing gravity promotes the transition from closed shear zones buried in the bulk to open ones that intersect the top surface. We show that the center position and width of the shear zone and the axial angular velocity at the top surface follow universal scaling laws when properly scaled by the gravity, applied pressure, and layer thickness. Our finding that the flow profiles lie on a universal master curve opens the possibility to predict the quasistatic shear flow of granular materials in varying gravitational environments.

2.
Phys Rev E ; 99(2-1): 022903, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934296

RESUMO

Structural defects within amorphous packings of symmetric particles can be characterized using a machine learning approach that incorporates structure functions of radial distances and angular arrangement. This yields a scalar field, softness, that correlates with the probability that a particle is about to be rearranged. However, when particle shapes are elongated, as in the case of dimers and ellipses, we find that the standard structure functions produce imprecise softness measurements. Moreover, ellipses exhibit deformation profiles in stark contrast to circular particles. In order to account for the effects of orientation and alignment, we introduce structure functions to recover the predictive performance of softness, as well as provide physical insight into local and extended dynamics. We study a model disordered solid, a bidisperse two-dimensional granular pillar, driven by uniaxial compression and composed entirely of monomers, dimers, or ellipses. We demonstrate how the computation of softness via a support vector machine extends to dimers and ellipses with the introduction of orientational structure functions. Then we highlight the spatial extent of rearrangements and defects, as well as their cross correlation, for each particle shape. Finally, we demonstrate how an additional machine learning algorithm, recursive feature elimination, provides an avenue to better understand how softness arises from particular structural aspects. We identify the most crucial structure functions in determining softness and discuss their physical implications.

3.
Phys Rev E ; 97(1-1): 012904, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448385

RESUMO

We probe the effects of particle shape on the global and local behavior of a two-dimensional granular pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry allows for direct measurement of global material response, as well as tracking of all individual particle trajectories. In general, drawing connections between local structure and local dynamics can be challenging in amorphous materials due to lower precision of atomic positions, so this study aims to elucidate such connections. We vary local interactions by using three different particle shapes: discrete circular grains (monomers), pairs of grains bonded together (dimers), and groups of three bonded in a triangle (trimers). We find that dimers substantially strengthen the pillar and the degree of this effect is determined by orientational order in the initial condition. In addition, while the three particle shapes form void regions at distinct rates, we find that anisotropies in the local amorphous structure remain robust through the definition of a metric that quantifies packing anisotropy. Finally, we highlight connections between local deformation rates and local structure.

4.
Front Neural Circuits ; 11: 56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28860973

RESUMO

The application of 2-photon laser scanning microscopy (TPLSM) techniques to measure the dynamics of cellular calcium signals in populations of neurons is an extremely powerful technique for characterizing neural activity within the central nervous system. The use of TPLSM on awake and behaving subjects promises new insights into how neural circuit elements cooperatively interact to form sensory perceptions and generate behavior. A major challenge in imaging such preparations is unavoidable animal and tissue movement, which leads to shifts in the imaging location (jitter). The presence of image motion can lead to artifacts, especially since quantification of TPLSM images involves analysis of fluctuations in fluorescence intensities for each neuron, determined from small regions of interest (ROIs). Here, we validate a new motion correction approach to compensate for motion of TPLSM images in the superficial layers of auditory cortex of awake mice. We use a nominally uniform fluorescent signal as a secondary signal to complement the dynamic signals from genetically encoded calcium indicators. We tested motion correction for single plane time lapse imaging as well as multiplane (i.e., volume) time lapse imaging of cortical tissue. Our procedure of motion correction relies on locating the brightest neurons and tracking their positions over time using established techniques of particle finding and tracking. We show that our tracking based approach provides subpixel resolution without compromising speed. Unlike most established methods, our algorithm also captures deformations of the field of view and thus can compensate e.g., for rotations. Object tracking based motion correction thus offers an alternative approach for motion correction, one that is well suited for real time spike inference analysis and feedback control, and for correcting for tissue distortions.


Assuntos
Artefatos , Córtex Auditivo/citologia , Imageamento Tridimensional , Movimento (Física) , Movimento/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Sinapsinas/genética , Sinapsinas/metabolismo , Transdução Genética , Vigília
5.
Phys Rev Lett ; 112(22): 228001, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24949788

RESUMO

We study the particle scale response of a 2D frictionless disk system to bulk forcing via cyclic shear with reversal amplitude γ_{r}. We find a subdiffusive γ_{r}-dependent regime, which is consistent with models of anomalous diffusion with scale-invariant cage dynamics, and a crossover to diffusive grain motion at high γ_{r}. Analysis of local displacements of a particle relative to its cage of neighbors reveals a key distinction from thermal systems. Particles are moved by fluctuations of their cage of neighbors rather than rattling in their cage, indicating a distinct cage-breaking mechanism.

6.
Phys Rev Lett ; 111(7): 078001, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992084

RESUMO

While convective flows are implicated in many granular segregation processes, the associated particle-scale rearrangements are not well understood. A three-dimensional bidisperse mixture segregates under steady shear, but the cyclically driven system either remains mixed or segregates slowly. Individual grain motion shows no signs of particle-scale segregation dynamics that precede bulk segregation. Instead, we find that the transition from nonsegregating to segregating flow is accompanied by significantly less reversible particle trajectories and the emergence of a convective flow field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...