Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 102(3): 277-284, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28306838

RESUMO

We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to 1800 mm annual precipitation. Koa stands along the gradient had basal area ranging from 8 to 42 m2/ha, LAI ranging from 1.4 to 5.4, and wood increment ranging from 0.7 to 7.1 tonnes/ha/year. N, P, and K contents by weight of sun leaves (phyllodes) were negatively correlated with specific leaf mass (SLM, g m-2) across sites; on a leaf area basis, N increased whereas P and K decreased with SLM. LAI, aboveground woody biomass increment, and production per unit leaf area (E) increased as phyllode δ13C became more negative. The δ13C data suggested that intrinsic water-use efficiency (ratio of assimilation to conductance) increased as water availability decreased. In five of the six sites, phyllode P contents increased as LAI increased, but biomass increment and E were not correlated with phyllode nutrient contents, suggesting that productivity was limited more by water than by nutrient availability. Because vapor pressure deficits increased with decreasing elevation, actual water-use efficiency (ratio of assimilation to transpiration) was lower at drier, low-elevation sites. There was a trade-off between intrinsic water-use efficiency and production per unit of canopy N or P across the gradient. In summary, koa responds to water limitation both by reducing stand LAI and by adjusting gas exchange, which results in increased intrinsic water-use efficiency but decreased E.

2.
Oecologia ; 80(3): 368-373, 1989 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28312064

RESUMO

In this study we compared the aboveground growth rates of two exotic shrubs (Rhamnus cathartica and Lonicera X bella) and two native shrubs (Cornus racemosa and Prunus serotina) that are important in southern Wisconsin hardwood forests. For all species except P. serotina, aboveground growth rates in an open habitat were greater than in an understory environment. Growth rates differed among species in the open habitat and were significantly correlated with woody production per unit leaf area. All species had greater leaf area per unit wood biomass in the understory than in the open habitat. A comparison of above-ground growth and annual carbon gain suggests much greater respiratory costs in the open habitat, especially for P. serotina. The data from this study were used to examine mechanisms of species response to different light availabilities. We found that the species that increased their production per unit leaf area in response to increased light did not increase their leaf area per unit wood biomass in response to low light, and vice versa. Production of proportionately high leaf area may be important for the growth of C. racemosa in low light.

3.
Oecologia ; 80(3): 356-367, 1989 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28312063

RESUMO

We compared seasonal trends in photosynthesis of two naturalized exotic shrubs (Rhamnus cathartica and Lonicera X bella) and two native shrubs (Cornus racemosa and Prunus serotina) in open and understory habitats in southern Wisconsin. We examined the relationships between resource availability and leaf photosynthetic performance in these four species. All four species had similar relationships between leaf nitrogen (N) content and photosynthetic rate, but the species differed in absolute leaf N content and therefore in photosynthetic rates. Maximum daily photosynthetic rates of all species were significantly correlated with leaf N content in the open habitat, but not in the understory, where low light availability was the major limitation to photosynthesis. Extended leaf longevity was important in the forest understory because it allowed shrubs to take advantage of high light availability at times when the overstory canopy was leafless. Early leaf emergence was more important than late senescence: from 27% to 35% of the annual carbon gain of P. serotina, R. cathartica, and L. X bella occurred prior to leaf emergence of C. racemosa, the species with the shortest leaf life span. Extended leaf longevity of exotic shrubs may help explain their persistence in the understory habitat, but it contributed relatively less to their annual carbon gain in the open habitat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...