Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1802(7-8): 659-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20388541

RESUMO

Neuraminidase 1 (NEU1) regulates the catabolism of sialoglycoconjugates in lysosomes. Congenital NEU1 deficiency in children is the basis of sialidosis, a severe neurosomatic disorder in which patients experience a broad spectrum of clinical manifestations varying in the age of onset and severity. Osteoskeletal deformities and muscle hypotonia have been described in patients with sialidosis. Here we present the first comprehensive analysis of the skeletal muscle pathology associated with loss of Neu1 function in mice. In this animal model, skeletal muscles showed an expansion of the epimysial and perimysial spaces, associated with proliferation of fibroblast-like cells and abnormal deposition of collagens. Muscle fibers located adjacent to the expanded connective tissue underwent extensive invagination of their sarcolemma, which resulted in the infiltration of the fibers by fibroblast-like cells and extracellular matrix, and in their progressive cytosolic fragmentation. Both the expanded connective tissue and the juxtaposed infiltrated muscle fibers were strongly positive for lysosomal markers and displayed increased proteolytic activity of lysosomal cathepsins and metalloproteinases. These combined features could lead to abnormal remodeling of the extracellular matrix that could be responsible for sarcolemmal invagination and progressive muscle fiber degeneration, ultimately resulting in an overt atrophic phenotype. This unique pattern of muscle damage, which has never been described in any myopathy, might explain the neuromuscular manifestations reported in patients with the type II severe form of sialidosis. More broadly, these findings point to a potential role of NEU1 in cell proliferation and extracellular matrix remodeling.


Assuntos
Tecido Conjuntivo/fisiopatologia , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neuraminidase/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Movimento Celular/genética , Proliferação de Células , Tecido Conjuntivo/patologia , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Fibroblastos/patologia , Camundongos , Camundongos Knockout , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Necrose/genética , Necrose/patologia , Neuraminidase/deficiência , Neuraminidase/fisiologia , Sarcolema/patologia
2.
PLoS One ; 5(3): e9866, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20352047

RESUMO

Muscle contractile proteins are expressed as a series of developmental isoforms that are in constant dynamic remodeling during embryogenesis, but how obsolete molecules are recognized and removed is not known. Ozz is a developmentally regulated protein that functions as the adaptor component of a RING-type ubiquitin ligase complex specific to striated muscle. Ozz(-/-) mutants exhibit defects in myofibrillogenesis and myofiber differentiation. Here we show that Ozz targets the rod portion of embryonic myosin heavy chain and preferentially recognizes the sarcomeric rather than the soluble pool of myosin. We present evidence that Ozz binding to the embryonic myosin isoform within sarcomeric thick filaments marks it for ubiquitination and proteolytic degradation, allowing its replacement with neonatal or adult isoforms. This unique function positions Ozz within a system that facilitates sarcomeric myosin remodeling during muscle maturation and regeneration. Our findings identify Ozz-E3 as the ubiquitin ligase complex that interacts with and regulates myosin within its fully assembled cytoskeletal structure.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Músculos/embriologia , Cadeias Pesadas de Miosina/metabolismo , Proteínas Repressoras/fisiologia , Sarcômeros/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Atrofia/patologia , Diferenciação Celular , Citoesqueleto/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Isoformas de Proteínas , Proteínas Repressoras/química , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/química , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/química
3.
PLoS One ; 2(1): e148, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17215957

RESUMO

Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation, immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration.


Assuntos
Chifres de Veado/crescimento & desenvolvimento , Chifres de Veado/fisiologia , Cervos , Fator de Crescimento Neural , RNA Mensageiro/metabolismo , Regeneração/fisiologia , Sequência de Aminoácidos , Animais , Chifres de Veado/inervação , Chifres de Veado/metabolismo , Axônios/metabolismo , Axônios/ultraestrutura , Cervos/anatomia & histologia , Cervos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo
4.
J Neurosci ; 25(37): 8528-33, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16162934

RESUMO

The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.


Assuntos
Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Adulto , Estimulação Elétrica , Eletromiografia , Humanos , Pessoa de Meia-Idade , Placa Motora/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/inervação , Condução Nervosa/fisiologia
5.
Dev Cell ; 6(2): 269-82, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14960280

RESUMO

The identities of the ubiquitin-ligases active during myogenesis are largely unknown. Here we describe a RING-type E3 ligase complex specified by the adaptor protein, Ozz, a novel SOCS protein that is developmentally regulated and expressed exclusively in striated muscle. In mice, the absence of Ozz results in overt maturation defects of the sarcomeric apparatus. We identified beta-catenin as one of the target substrates of the Ozz-E3 in vivo. In the differentiating myofibers, Ozz-E3 regulates the levels of sarcolemma-associated beta-catenin by mediating its degradation via the proteasome. Expression of beta-catenin mutants that reduce the binding of Ozz to endogenous beta-catenin leads to Mb-beta-catenin accumulation and myofibrillogenesis defects similar to those observed in Ozz null myocytes. These findings reveal a novel mechanism of regulation of Mb-beta-catenin and the role of this pool of the protein in myofibrillogenesis, and implicate the Ozz-E3 ligase in the process of myofiber differentiation.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Fenilalanina/análogos & derivados , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Envelhecimento , Animais , Northern Blotting , Western Blotting , Células Cultivadas , Embrião de Mamíferos , Compostos de Epóxi/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Desenvolvimento Muscular/genética , Músculo Esquelético/anormalidades , Músculo Esquelético/embriologia , Músculo Esquelético/ultraestrutura , Mutação , Mioblastos/metabolismo , Mioblastos/ultraestrutura , Miogenina/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Testes de Precipitina , Proteínas Repressoras/metabolismo , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Coloração e Rotulagem , Frações Subcelulares/metabolismo , Tenascina/metabolismo , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , beta Catenina
6.
Curr Opin Neurobiol ; 12(1): 100-3, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11861171

RESUMO

Recent studies challenge the view that signals provided by motor neurons are required to activate subsynaptic nuclei and induce postsynaptic specializations in developing skeletal muscle. New findings show that acetylcholine receptor genes are expressed and that acetylcholine receptor clusters form preferentially in the prospective synaptic region of muscle independently of motor innervation. These results indicate that developing myotubes are patterned by mechanisms intrinsic to developing muscles and raise the possibility that patterning of muscles may influence the growth pattern of motor axons and the sites where synapses form.


Assuntos
Neurônios Motores/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/embriologia , Músculo Esquelético/inervação , Animais , Linhagem da Célula/fisiologia , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...