Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2991, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316972

RESUMO

Multivariate time series forecasting is a critical problem in many real-world scenarios. Recent advances in deep learning have significantly enhanced the ability to tackle such problems. However, a primary challenge in time series forecasting comes from the imbalanced time series data that include extreme events. Despite being a small fraction of the data instances, extreme events can have a negative impact on forecasting as they deviate from the majority. However, many recent time series forecasting methods neglect this issue, leading to suboptimal performance. To address these challenges, we introduce a novel model, the Extreme Event Adaptive Gated Recurrent Unit (eGRU), tailored explicitly for forecasting tasks. The eGRU is designed to effectively learn both normal and extreme event patterns within time series data. Furthermore, we introduce a time series data segmentation technique that divides the input sequence into segments, each comprising multiple time steps. This segmentation empowers the eGRU to capture data patterns at different time step resolutions while simultaneously reducing the overall input length. We conducted comprehensive experiments on four real-world benchmark datasets to evaluate the eGRU's performance. Our results showcase its superiority over vanilla RNNs, LSTMs, GRUs, and other state-of-the-art RNN variants in multivariate time series forecasting. Additionally, we conducted ablation studies to demonstrate the consistently superior performance of eGRU in generating accurate forecasts while incorporating a diverse range of labeling results.

2.
Soft Matter ; 19(42): 8247-8263, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869970

RESUMO

Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 µM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 µM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 µM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 µM and weakly bound its CM with a Kd of 117.6 µM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Staphylococcus aureus , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/química , Lipídeos de Membrana/química , Antibacterianos/química
3.
BMC Bioinformatics ; 24(1): 55, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803767

RESUMO

BACKGROUND: The advance in single-cell RNA sequencing technology has enhanced the analysis of cell development by profiling heterogeneous cells in individual cell resolution. In recent years, many trajectory inference methods have been developed. They have focused on using the graph method to infer the trajectory using single-cell data, and then calculate the geodesic distance as the pseudotime. However, these methods are vulnerable to errors caused by the inferred trajectory. Therefore, the calculated pseudotime suffers from such errors. RESULTS: We proposed a novel framework for trajectory inference called the single-cell data Trajectory inference method using Ensemble Pseudotime inference (scTEP). scTEP utilizes multiple clustering results to infer robust pseudotime and then uses the pseudotime to fine-tune the learned trajectory. We evaluated the scTEP using 41 real scRNA-seq data sets, all of which had the ground truth development trajectory. We compared the scTEP with state-of-the-art methods using the aforementioned data sets. Experiments on real linear and non-linear data sets demonstrate that our scTEP performed superior on more data sets than any other method. The scTEP also achieved a higher average and lower variance on most metrics than other state-of-the-art methods. In terms of trajectory inference capacity, the scTEP outperforms those methods. In addition, the scTEP is more robust to the unavoidable errors resulting from clustering and dimension reduction. CONCLUSION: The scTEP demonstrates that utilizing multiple clustering results for the pseudotime inference procedure enhances its robustness. Furthermore, robust pseudotime strengthens the accuracy of trajectory inference, which is the most crucial component in the pipeline. scTEP is available at https://cran.r-project.org/package=scTEP .


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , Benchmarking , Análise de Sequência de RNA/métodos
4.
Biochim Biophys Acta Biomembr ; 1864(1): 183806, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656552

RESUMO

Aurein 2.1, aurein 2.6 and aurein 3.1 are amphibian host defence peptides that kill bacteria via the use of lytic amphiphilic α-helical structures. The C-terminal PEGylation of these peptides led to decreased antibacterial activity (Minimum Lethal Concentration (MLCs) ↓ circa one and a half to threefold), reduced levels of amphiphilic α-helical structure in solvents (α-helicity ↓ circa 15.0%) and lower surface activity (Δπ ↓ > 1.5 mN m-1). This PEGylation of aureins also led to decreased levels of amphiphilic α-helical structure in the presence of anionic membranes and zwitterionic membranes (α-helicity↓ > 10.0%) as well as reduced levels of penetration (Δπ ↓ > 3.0 mN m-1) and lysis (lysis ↓ > 10.0%) of these membranes. Based on these data, it was proposed that the antibacterial action of PEGylated aureins involved the adoption of α-helical structures that promote the lysis of bacterial membranes, but with lower efficacy than their native counterparts. However, PEGylation also reduced the haemolytic activity of native aureins to negligible levels (haemolysis ↓ from circa 10% to 3% or less) and improved their relative therapeutic indices (RTIs ↑ circa three to sixfold). Based on these data, it is proposed that PEGylated aureins possess the potential for therapeutic development; for example, to combat infections due to multi-drug resistant strains of S. aureus, designated as high priority by the World Health Organization.


Assuntos
Proteínas de Anfíbios/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Anfíbios/farmacologia , Anfíbios/genética , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Polietilenoglicóis/química , Staphylococcus aureus/efeitos dos fármacos
5.
Curr Protein Pept Sci ; 22(11): 775-799, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323184

RESUMO

A number of disorders and diseases are associated with conditions of high pH, and many conventional antibiotics lose their efficacy under these pH conditions, generating a need for novel antimicrobials. A potential solution to fulfill this need is Antimicrobial Peptides (AMPs) with high pH optima. This review shows that a variety of anionic and cationic AMPs with this pH dependency are produced by creatures across the eukaryotic kingdom, including rabbits, cattle, sheep, fish, crabs and frog. These AMPs exhibit activity against viruses, bacteria, and fungi that involve membrane interactions and appear to be facilitated by a variety of mechanisms that generally promote passage across membranes to attack intracellular targets, such as DNA or protein synthesisand/or membrane lysis. Some of these mechanisms are unknown, but those elucidated include the use of bacterial pores and transporters, the self-promoted uptake pathway, and established models of membrane interaction, such as the carpet mechanism, toroidal pore formation, the adoption of tilted peptide, and the SHM model. A variety of potential roles have been proposed for these AMPs, including use as antivirals, antibacterials, antifungals, adjuvants to antimicrobial therapy, biomarkers of disease, and probes for pathogenic microbes. In this review, these properties are described and discussed, emphasizing the antimicrobial mechanisms used by these AMPs and the pH dependency of these mechanisms.


Assuntos
Peptídeos Antimicrobianos
6.
Mol Cell Biochem ; 476(10): 3729-3744, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34091807

RESUMO

Here the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 µM) but potent efficacy towards Gram-positive bacteria (MLCs ≤ 6.25 µM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5-26.9%), whilst similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3-5.1 mN m-1) and lyse (↑ 15.1-32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1-23) in the N → C direction, with - < µH > increasing overall from circa - 0.8 to - 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the first, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process. It is proposed that E2EM-lin has the potential for development to serve purposes ranging from therapeutic usage, such as chronic wound disinfection, to food preservation by killing food spoilage organisms.


Assuntos
Proteínas de Anfíbios , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Concentração de Íons de Hidrogênio , Conformação Proteica em alfa-Hélice
7.
Biochim Biophys Acta Biomembr ; 1862(2): 183141, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790693

RESUMO

Linearized esculentin 2 EM (E2EM-lin) from the frog, Glandirana emeljanovi was highly active against Gram-positive bacteria (minimum lethal concentration ≤ 5.0 µM) and strongly α-helical in the presence of lipid mimics of their membranes (>55.0%). The N-terminal α-helical structure adopted by E2EM-lin showed the potential to form a membrane interactive, tilted peptide with an hydrophobicity gradient over residues 9 to 23. E2EM-lin inserted strongly into lipid mimics of membranes from Gram-positive bacteria (maximal surface pressure changes ≥5.5 mN m-1), inducing increased rigidity (Cs-1 ↑), thermodynamic instability (ΔGmix < 0 â†’ ΔGmix > 0) and high levels of lysis (>50.0%). These effects appeared to be driven by the high anionic lipid content of membranes from Gram-positive bacteria; namely phosphatidylglycerol (PG) and cardiolipin (CL) species. The high levels of α-helicity (60.0%), interaction (maximal surface pressure change = 6.7 mN m-1) and lysis (66.0%) shown by E2EM-lin with PG species was a major driver in the ability of the peptide to lyse and kill Gram-positive bacteria. E2EM-lin also showed high levels of α-helicity (62.0%) with CL species but only low levels of interaction (maximal surface pressure change = 2.9 mN m-1) and lysis (21.0%) with the lipid. These combined data suggest that E2EM-lin has a specificity for killing Gram-positive bacteria that involves the formation of tilted structure and appears to be primarily driven by PG-mediated membranolysis. These structure/function relationships are used to help explain the pore forming process proposed to describe the membranolytic, antibacterial action of E2EM-lin.


Assuntos
Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ligação Proteica , Conformação Proteica em alfa-Hélice
8.
Soft Matter ; 15(20): 4215-4226, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31074477

RESUMO

Modelin-5-CONH2 (M5-NH2) is a synthetic antimicrobial peptide, which was found to show potent activity against Bacillus subtilis (minimum lethal concentration = 8.47 µM) and to bind strongly to membranes of the organism (Kd = 10.44 µM). The peptide adopted high levels of amphiphilic α-helical structure in the presence of these membranes (>50%), which led to high levels of insertion (Δπ ≥ 8.0 mN m-1). M5-NH2 showed high affinity for anionic lipid (Kd = 7.46 µM) and zwitterionic lipid (Kd = 14.7 µM), which drove insertion into membranes formed from these lipids (Δπ = 11.5 and 3.5 mN m-1, respectively). Neutron diffraction studies showed that M5-NH2 inserted into B. subtilis membranes with its N-terminal residue, L16, located 5.5 Å from the membrane centre, in the acyl chain region of these membranes, and promoted a reduction in membrane thickness of circa 1.8 Å or 5% of membrane width. Insertion into B. subtilis membranes by the peptide also promoted other effects associated with membrane thinning, including increases in membrane surface area (Cs-1 decreases) and fluidity (ΔGmix > 0 to ΔGmix < 0). Membrane insertion and thinning by M5-NH2 induced high levels of lysis (>55%), and it is speculated that the antibacterial action of the peptide may involve the toroidal pore, carpet or tilted-type mechanism of membrane permeabilization.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/efeitos dos fármacos , Fenômenos Biofísicos , Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Ligação Proteica , Propriedades de Superfície , Termodinâmica
9.
Curr Protein Pept Sci ; 19(8): 823-838, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484989

RESUMO

Anionic antimicrobial peptides (AAMPs) with net charges ranging from -1 to -8 have been identified in frogs, toads, newts and salamanders across Africa, South America and China. Most of these peptides show antibacterial activity and a number of them are multifunctional, variously showing antifungal activity, anticancer action, neuropeptide function and the ability to potentiate conventional antibiotics. Antimicrobial mechanisms proposed for these AAMPs, include toroidal pore formation and the Shai-Huang-Matsazuki model of membrane interaction along with pH dependent amyloidogenesis and membranolysis via tilted peptide formation. The potential for therapeutic and biotechnical application of these AAMPs has been demonstrated, including the development of amyloid-based nanomaterials and antiviral agents. It is concluded that amphibian AAMPs represent an untapped potential source of biologically active agents and merit far greater research interest.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Anfíbios/metabolismo , Peptídeos/química , Peptídeos/farmacologia , África , Proteínas de Anfíbios/uso terapêutico , Amiloide/metabolismo , Animais , Ânions/química , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antivirais/química , Antivirais/farmacologia , China , Humanos , Peptídeos/uso terapêutico , Ligação Proteica , Transdução de Sinais , América do Sul
10.
Biochimie ; 137: 29-34, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28249727

RESUMO

Here we report the first major example of anionic amphibian host defence peptides (HDPs) with anticancer activity. Maximin H5 (MH5N) is a C-terminally amidated, anionic host defence peptide from toads of the Bombina genus, which was shown to possess activity against the glioma cell line, T98G (EC50 = 125 µM). The peptide adopted high levels of α-helical structure (57.3%) in the presence of model cancer membranes (DMPC:DMPS in a molar ratio of 10:1). MH5N also showed a strong ability to penetrate these model membranes (Π = 10.5 mN m-1), which correlated with levels of DMPS (R2 > 0.98). Taken with the high ability of the peptide to lyse these membranes (65.7%), it is proposed that maximin H5 kills cancer cells via membranolytic mechanisms that are promoted by anionic lipid. It was also found that C-terminally deaminated maximin H5 (MH5C) exhibited lower levels of α-helical structure in the presence of cancer membrane mimics (44.8%) along with a reduced ability to penetrate these membranes (Π = 8.1 mN m-1) and induce their lysis (56.6%). These data suggested that the two terminal amide groups of native maximin H5 are required for its optimal membranolytic and anticancer activity.


Assuntos
Proteínas de Anfíbios/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glioblastoma/patologia , Neuroglia/patologia , Fragmentos de Peptídeos/farmacologia , Animais , Anuros/metabolismo , Células Cultivadas , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Lipídeos/química , Neuroglia/efeitos dos fármacos
11.
Pharmaceuticals (Basel) ; 9(4)2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27809281

RESUMO

Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.

12.
BMC Syst Biol ; 10 Suppl 2: 51, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27490697

RESUMO

BACKGROUND: Networks provide effective models to study complex biological systems, such as gene and protein interaction networks. With the advent of new sequencing technologies, many life scientists are grasping for user-friendly methods and tools to examine biological components at the whole-systems level. Gene co-expression network analysis approaches are frequently used to successfully associate genes with biological processes and demonstrate great potential to gain further insights into the functionality of genes, thus becoming a standard approach in Systems Biology. Here the objective is to construct biologically meaningful and statistically strong co-expression networks, the identification of research dependent subnetworks, and the presentation of self-contained results. RESULTS: We introduce petal, a novel approach to generate gene co-expression network models based on experimental gene expression measures. petal focuses on statistical, mathematical, and biological characteristics of both, input data and output network models. Often over-looked issues of current co-expression analysis tools include the assumption of data normality, which is seldom the case for hight-throughput expression data obtained from RNA-seq technologies. petal does not assume data normality, making it a statistically appropriate method for RNA-seq data. Also, network models are rarely tested for their known typical architecture: scale-free and small-world. petal explicitly constructs networks based on both these characteristics, thereby generating biologically meaningful models. Furthermore, many network analysis tools require a number of user-defined input variables, these often require tuning and/or an understanding of the underlying algorithm; petal requires no user input other than experimental data. This allows for reproducible results, and simplifies the use of petal. Lastly, this approach is specifically designed for very large high-throughput datasets; this way, petal's network models represent as much of the entire system as possible to provide a whole-system approach. CONCLUSION: petal is a novel tool for generating co-expression network models of whole-genomics experiments. It is implemented in R and available as a library. Its application to several whole-genome experiments has generated novel meaningful results and has lead the way to new testing hypothesizes for further biological investigation.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Modelos Genéticos , Software
13.
Biochemistry ; 55(27): 3735-51, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27336672

RESUMO

Maximin H5 (MH5) is an amphibian antimicrobial peptide specifically targeting Staphylococcus aureus. At pH 6, the peptide showed an improved ability to penetrate (ΔΠ = 6.2 mN m(-1)) and lyse (lysis = 48%) Staphylococcus aureus membrane mimics, which incorporated physiological levels of lysylated phosphatidylglycerol (Lys-PG, 60%), compared to that at pH 7 (ΔΠ = 5.6 mN m(-1) and lysis = 40% at pH 7) where levels of Lys-PG are lower (40%). The peptide therefore appears to have optimal function at pH levels known to be optimal for the organism's growth. MH5 killed S. aureus (minimum inhibitory concentration of 90 µM) via membranolytic mechanisms that involved the stabilization of α-helical structure (approximately 45-50%) and showed similarities to the "Carpet" mechanism based on its ability to increase the rigidity (Cs(-1) = 109.94 mN m(-1)) and thermodynamic stability (ΔGmix = -3.0) of physiologically relevant S. aureus membrane mimics at pH 6. On the basis of theoretical analysis, this mechanism might involve the use of a tilted peptide structure, and efficacy was noted to vary inversely with the Lys-PG content of S. aureus membrane mimics for each pH studied (R(2) ∼ 0.97), which led to the suggestion that under biologically relevant conditions, low pH helps mediate Lys-PG-induced resistance in S. aureus to MH5 antibacterial action. The peptide showed a lack of hemolytic activity (<2% hemolysis) and merits further investigation as a potential template for development as an antistaphylococcal agent in medically and biotechnically relevant areas.


Assuntos
Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Lisina/farmacologia , Fosfatidilgliceróis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/metabolismo , Células Cultivadas , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Ovinos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
14.
Protein Pept Lett ; 23(8): 676-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165406

RESUMO

It is becoming increasingly clear that plants ranging across the plant kingdom produce anionic host defence peptides (AHDPs) with potent activity against a wide variety of human cancers cells. In general, this activity involves membrane partitioning by AHDPs, which leads to membranolysis and / or internalization to attack intracellular targets such as DNA. Several models have been proposed to describe these events including: the toroidal pore and Shai-Matsuzaki-Huang mechanisms but, in general, the mechanisms underpinning the membrane interactions and anticancer activity of these peptides are poorly understood. Plant AHDPs with anticancer activity can be conveniently discussed with reference to two groups: cyclotides, which possess cyclic molecules stabilized by cysteine knot motifs, and other ADHPs that adopt extended and α-helical conformations. Here, we review research into the anticancer action of these two groups of peptides along with current understanding of the mechanisms underpinning this action.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Plantas/imunologia , Ânions , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Humanos , Modelos Moleculares , Imunidade Vegetal , Estrutura Secundária de Proteína
15.
J Bioinform Comput Biol ; 14(3): 1642003, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26932271

RESUMO

The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.


Assuntos
Canais Iônicos/química , Modelos Moleculares , Software , Cloreto de Cálcio/química , Simulação por Computador , Canais Iônicos/metabolismo , Cadeias de Markov
16.
Prog Lipid Res ; 59: 26-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25936689

RESUMO

Host defence peptides (HDPs) are antimicrobial agents produced by organisms across the prokaryotic and eukaryotic kingdoms. Many prokaryotes produce HDPs, which utilise lipid and protein receptors in the membranes of bacterial competitors to facilitate their antibacterial action and thereby survive in their niche environment. As a major example, it is well established that cinnamycin and duramycins from Streptomyces have a high affinity for phosphatidylethanolamine (PE) and exhibit activity against other Gram-positive organisms, such as Bacillus. In contrast, although eukaryotic HDPs utilise membrane interactive mechanisms to facilitate their antimicrobial activity, the prevailing view has long been that these mechanisms do not involve membrane receptors. However, this view has been recently challenged by reports that a number of eukaryotic HDPs such as plant cyclotides also use PE as a receptor to promote their antimicrobial activities. Here, we review current understanding of the mechanisms that underpin the use of PE as a receptor in the antimicrobial and other biological actions of HDPs and describe medical and biotechnical uses of these peptides, which range from tumour imaging and detection to inclusion in topical microbicidal gels to prevent the sexual transmission of HIV.


Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Fosfatidiletanolaminas/fisiologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Humanos , Imunidade Inata , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfatidiletanolaminas/química , Ligação Proteica
17.
Biochim Biophys Acta ; 1848(5): 1111-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25640709

RESUMO

Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8 mN m(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8 m Nm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infectives.


Assuntos
Amidas/farmacologia , Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Amidas/química , Amidas/toxicidade , Proteínas de Anfíbios/química , Proteínas de Anfíbios/toxicidade , Antibacterianos/química , Antibacterianos/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Humanos , Lipídeos de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Fatores de Tempo
18.
J Pept Sci ; 20(12): 909-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234689

RESUMO

Globally, death due to cancers is likely to rise to over 20 million by 2030, which has created an urgent need for novel approaches to anticancer therapies such as the development of host defence peptides. Cn-AMP2 (TESYFVFSVGM), an anionic host defence peptide from green coconut water of the plant Cocos nucifera, showed anti-proliferative activity against the 1321N1 and U87MG human glioma cell lines with IC50 values of 1.25 and 1.85 mM, respectively. The membrane interactive form of the peptide was found to be an extended conformation, which primarily included ß-type structures (levels > 45%) and random coil architecture (levels > 45%). On the basis of these and other data, it is suggested that the short anionic N-terminal sequence (TES) of Cn-AMP2 interacts with positively charged moieties in the cancer cell membrane. Concomitantly, the long hydrophobic C-terminal sequence (YFVFSVGM) of the peptide penetrates the membrane core region, thereby driving the translocation of Cn-AMP2 across the cancer cell membrane to attack intracellular targets and induce anti-proliferative mechanisms. This work is the first to demonstrate that anionic host defence peptides have activity against human glioblastoma, which potentially provides an untapped source of lead compounds for development as novel agents in the treatment of these and other cancers.


Assuntos
Antineoplásicos/isolamento & purificação , Cocos/química , Oligopeptídeos/isolamento & purificação , Sequência de Aminoácidos , Ânions , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Humanos , Oligopeptídeos/química , Oligopeptídeos/farmacologia
19.
Trends Mol Med ; 20(7): 363-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24928236

RESUMO

Over the past 5 years, several studies showed that ultrasound, which is sound with a frequency>20 kHz, is able to kill bacteria by activating molecules termed sonosensitizers (SS) to produce reactive oxygen species, which are toxic to microbes. It is our opinion that this work opens up the potential for the development of a novel form of ultrasound-mediated antimicrobial therapy. Termed sonodynamic antimicrobial chemotherapy (SACT), we define this therapy as a regime where a SS is selectively delivered to target microbial cells and activated by ultrasound to induce the death of those microbial cells. Here, we review recent work on SACT, current understanding of its mechanisms, and future prospects for SACT as a therapeutically viable antimicrobial regime.


Assuntos
Infecções Bacterianas/patologia , Infecções Bacterianas/terapia , Terapia por Ultrassom/métodos , Humanos
20.
FEMS Microbiol Lett ; 356(1): 20-2, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24861483

RESUMO

Sonodynamic antimicrobial chemotherapy (SACT) is a novel modality, which uses ultrasound to kill bacteria by the activation of molecules termed sonosensitisers (SS) to produce reactive oxygen species that are toxic to microorganism although microbial resistance to this modality has been reported. There are a growing number of SS being reported with the dual ability to be activated by both ultrasound and light, and we hypothesis that a novel antimicrobial strategy, potentially known as sonophotodynamic antimicrobial chemotherapy (SPACT), could be developed based on these agents. SPACT offers advantages over SACT and could constitute a new weapon in the fight against the growing global threat posed by microbial infections.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Sonicação , Farmacorresistência Bacteriana , Humanos , Fotoquimioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...