Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641066

RESUMO

Integrin-mediated activation of the profibrotic mediator transforming growth factor-ß1 (TGF-ß1), plays a critical role in idiopathic pulmonary fibrosis (IPF) pathogenesis. Galectin-3 is believed to contribute to the pathological wound healing seen in IPF, although its mechanism of action is not precisely defined. We hypothesized that galectin-3 potentiates TGF-ß1 activation and/or signaling in the lung to promote fibrogenesis. We show that galectin-3 induces TGF-ß1 activation in human lung fibroblasts (HLFs) and specifically that extracellular galectin-3 promotes oleoyl-L-α-lysophosphatidic acid sodium salt-induced integrin-mediated TGF-ß1 activation. Surface plasmon resonance analysis confirmed that galectin-3 binds to αv integrins, αvß1, αvß5, and αvß6, and to the TGFßRII subunit in a glycosylation-dependent manner. This binding is heterogeneous and not a 1:1 binding stoichiometry. Binding interactions were blocked by small molecule inhibitors of galectin-3, which target the carbohydrate recognition domain. Galectin-3 binding to ß1 integrin was validated in vitro by coimmunoprecipitation in HLFs. Proximity ligation assays indicated that galectin-3 and ß1 integrin colocalize closely (≤40 nm) on the cell surface and that colocalization is increased by TGF-ß1 treatment and blocked by galectin-3 inhibitors. In the absence of TGF-ß1 stimulation, colocalization was detectable only in HLFs from IPF patients, suggesting the proteins are inherently more closely associated in the disease state. Galectin-3 inhibitor treatment of precision cut lung slices from IPF patients' reduced Col1a1, TIMP1, and hyaluronan secretion to a similar degree as TGF-ß type I receptor inhibitor. These data suggest that galectin-3 promotes TGF-ß1 signaling and may induce fibrogenesis by interacting directly with components of the TGF-ß1 signaling cascade.


Assuntos
Fibroblastos , Galectina 3 , Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Galectina 3/metabolismo , Galectina 3/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Transdução de Sinais , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Galectinas/metabolismo , Colágeno Tipo I/metabolismo , Células Cultivadas , Proteínas Sanguíneas
2.
J Biol Chem ; 299(11): 105331, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820867

RESUMO

The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.


Assuntos
Cobre , Escherichia coli , Sítios de Ligação , Cobre/metabolismo , Escherichia coli/metabolismo , Íons/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Prata/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Nucleic Acids Res ; 51(4): 1859-1879, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727461

RESUMO

Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.


Assuntos
Fator de Iniciação 4A em Eucariotos , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Purinas , RNA Mensageiro/metabolismo , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo
4.
J Biol Chem ; 299(3): 102936, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702253

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Domínios Proteicos , Staphylococcus aureus , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lectinas/química , Lectinas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Domínios Proteicos/fisiologia , Estrutura Terciária de Proteína , Ligação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli , Células Epiteliais/microbiologia
5.
Br J Nurs ; 31(12): 612-618, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35736849

RESUMO

Transanal irrigation (TAI) is safe and effective treatment for constipation and faecal incontinence, but it should not be carried out before less invasive options have been tried. A thorough patient assessment and consideration of their preferences and tolerance should determine suitability and system choice. The range of available TAI equipment can be overwhelming. Therefore, to aid health professionals, this article presents a summary of the latest available devices on the market, as well as guidance on how to select a suitable device. TAI devices can be categorised into low-or high-volume; cones, catheters or balloon inflating devices; manual, electric pump or gravity-fed systems; and bed systems. Determining whether a low or high volume of water is required is a good starting point for device selection. Nurses should be aware of available devices and select one most suitable for a patient, as well as adequately train them in its usage and provide follow-up support. Nurses should communicate the potential improvement to quality of life TAI can offer and encourage adherence to avoid premature discontinuation.


Assuntos
Canal Anal , Incontinência Fecal , Constipação Intestinal/terapia , Incontinência Fecal/terapia , Humanos , Qualidade de Vida , Irrigação Terapêutica , Resultado do Tratamento
6.
PLoS One ; 16(10): e0256070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653190

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 µM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 µM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/metabolismo , Haemophilus influenzae/metabolismo , Heme/metabolismo , RNA de Cadeia Dupla/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antibacterianos/farmacologia , Proteínas de Transporte/genética , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Otite Média/microbiologia , Otite Média/patologia , Conformação Proteica , Transporte Proteico/fisiologia , RNA de Cadeia Dupla/genética , Motivos de Ligação ao RNA/genética , Fatores de Virulência/metabolismo
7.
Sci Rep ; 11(1): 10617, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012108

RESUMO

Approaches are needed for therapy of the severe acute respiratory syndrome from SARS-CoV-2 coronavirus (COVID-19). Interfering with the interaction of viral antigens with the angiotensin converting enzyme 2 (ACE-2) receptor is a promising strategy by blocking the infection of the coronaviruses into human cells. We have implemented a novel protein engineering technology to produce a super-potent tetravalent form of ACE2, coupled to the human immunoglobulin γ1 Fc region, using a self-assembling, tetramerization domain from p53 protein. This high molecular weight Quad protein (ACE2-Fc-TD) retains binding to the SARS-CoV-2 receptor binding spike protein and can form a complex with the spike protein plus anti-viral antibodies. The ACE2-Fc-TD acts as a powerful decoy protein that out-performs soluble monomeric and dimeric ACE2 proteins and blocks both SARS-CoV-2 pseudovirus and SARS-CoV-2 virus infection with greatly enhanced efficacy. The ACE2 tetrameric protein complex promise to be important for development as decoy therapeutic proteins against COVID-19. In contrast to monoclonal antibodies, ACE2 decoy is unlikely to be affected by mutations in SARS-CoV-2 that are beginning to appear in variant forms. In addition, ACE2 multimeric proteins will be available as therapeutic proteins should new coronaviruses appear in the future because these are likely to interact with ACE2 receptor.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/farmacologia , Antivirais/metabolismo , COVID-19/prevenção & controle , Engenharia de Proteínas/métodos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/química , COVID-19/enzimologia , COVID-19/virologia , Linhagem Celular , Desenho de Fármacos , Haplorrinos , Humanos , Ligação Proteica , Elementos Estruturais de Proteínas , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
8.
Biochim Biophys Acta Gen Subj ; 1864(12): 129730, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926959

RESUMO

BACKGROUND: Human Exonuclease1 (hExo1) participates in the resection of DNA double-strand breaks by generating long 3'-single-stranded DNA overhangs, critical for homology-based DNA repair and activation of the ATR-dependent checkpoint. The C-terminal region is essential for modulating the activity of hExo1, containing numerous sites of post-translational modification and binding sites for partner proteins. METHODS: Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Circular Dichroism (CD) spectroscopy and enzymatic assays. RESULTS: AUC and DLS indicates the C-terminal region has a highly extended structure while CD suggest a tendency to adopt a novel left-handed ß-sheet structure, together implying the C-terminus may exhibit a transient fluctuating structure that could play a role in binding partner proteins known to regulate the activity of hExo1. Interaction with 14-3-3 protein has a cooperative inhibitory effect upon DNA resection activity, which indicates an allosteric transition occurs upon binding partner proteins. CONCLUSIONS: This study has uncovered that hExo1 consist of a folded N-terminal nuclease domain and a highly extended C-terminal region which is known to interact with partner proteins that regulates the activity of hExo1. A positively cooperative mechanism of binding allows for stringent control of hExo1 activity. Such a transition would coordinate the control of hExo1 by hExo1 regulators and hence allow careful coordination of the process of DNA end resection. SIGNIFICANCE: The assays presented herein could be readily adapted to rapidly identify and characterise the effects of modulators of the interaction between the 14-3-3 proteins and hExo1. It is conceivable that small molecule modulators of 14-3-3 s-hExo1 interaction may serve as effective chemosensitizers for cancer therapy.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas 14-3-3/metabolismo , Regulação Alostérica , Enzimas Reparadoras do DNA/química , Exodesoxirribonucleases/química , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas
9.
Cancer Res ; 80(16): 3399-3412, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32532823

RESUMO

Murine IgG3 glycan-targeting mAb often induces direct cell killing in the absence of immune effector cells or complement via a proinflammatory mechanism resembling oncotic necrosis. This cancer cell killing is due to noncovalent association between Fc regions of neighboring antibodies, resulting in enhanced avidity. Human isotypes do not contain the residues underlying this cooperative binding mode; consequently, the direct cell killing of mouse IgG3 mAb is lost upon chimerization or humanization. Using the Lewisa/c/x -targeting 88mAb, we identified the murine IgG3 residues underlying the direct cell killing and increased avidity via a series of constant region shuffling and subdomain swapping approaches to create improved ("i") chimeric mAb with enhanced tumor killing in vitro and in vivo. Constant region shuffling identified a major CH3 and a minor CH2 contribution, which was further mapped to discontinuous regions among residues 286-306 and 339-378 that, when introduced in 88hIgG1, recapitulated the direct cell killing and avidity of 88mIgG3. Of greater interest was the creation of a sialyl-di-Lewisa-targeting i129G1 mAb via introduction of these selected residues into 129hIgG1, converting it into a direct cell killing mAb with enhanced avidity and significant in vivo tumor control. The human iG1 mAb, termed Avidimabs, retained effector functions, paving the way for the proinflammatory direct cell killing to promote antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity through relief of immunosuppression. Ultimately, Fc engineering of human glycan-targeting IgG1 mAb confers proinflammatory direct cell killing and enhanced avidity, an approach that could be used to improve the avidity of other mAb with therapeutic potential. SIGNIFICANCE: Fc engineering enhances avidity and direct cell killing of cancer-targeting anti-glycan antibodies to create superior clinical candidates for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Morte Celular/imunologia , Neoplasias Colorretais/terapia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Polissacarídeos/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Proteínas do Sistema Complemento , Feminino , Engenharia Genética , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Distribuição Aleatória
10.
RNA ; 26(3): 265-277, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31852734

RESUMO

Staufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length hStaufen155, showing that its domains are arranged as beads-on-a-string connected by flexible linkers. In analogy with other nucleic acid-binding proteins, this could underpin Stau1 functional plasticity.


Assuntos
Proteínas do Citoesqueleto/ultraestrutura , Conformação Proteica , Proteínas de Ligação a RNA/ultraestrutura , Sequência de Aminoácidos/genética , Proteínas do Citoesqueleto/química , Humanos , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/química
11.
J Med Chem ; 62(21): 9703-9717, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31626547

RESUMO

Aminoacyl-tRNA synthetases are ubiquitous and essential enzymes for protein synthesis and also a variety of other metabolic processes, especially in bacterial species. Bacterial aminoacyl-tRNA synthetases represent attractive and validated targets for antimicrobial drug discovery if issues of prokaryotic versus eukaryotic selectivity and antibiotic resistance generation can be addressed. We have determined high-resolution X-ray crystal structures of the Escherichia coli and Staphylococcus aureus seryl-tRNA synthetases in complex with aminoacyl adenylate analogues and applied a structure-based drug discovery approach to explore and identify a series of small molecule inhibitors that selectively inhibit bacterial seryl-tRNA synthetases with greater than 2 orders of magnitude compared to their human homologue, demonstrating a route to the selective chemical inhibition of these bacterial targets.


Assuntos
Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Sondas Moleculares/química , Serina-tRNA Ligase/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Estrutura Molecular , Serina-tRNA Ligase/química
12.
Appl Microbiol Biotechnol ; 103(17): 7275-7286, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31346685

RESUMO

Carbonic anhydrase catalyses the interconversion of carbon dioxide and water to bicarbonate and protons. It was unknown if the industrial-relevant acetogen Clostridium autoethanogenum possesses these enzymes. We identified two putative carbonic anhydrase genes in its genome, one of the ß class and one of the γ class. Carbonic anhydrase activity was found for the purified ß class enzyme, but not the γ class candidate. Functional complementation of an Escherichia coli carbonic anhydrase knock-out mutant showed that the ß class carbonic anhydrase could complement this activity, but not the γ class candidate gene. Phylogenetic analysis showed that the ß class carbonic anhydrase of Clostridium autoethanogenum represents a novel sub-class of ß class carbonic anhydrases that form the F-clade. The members of this clade have the shortest primary structure of any known carbonic anhydrase.


Assuntos
Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/metabolismo , Clostridium/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Catálise , Clostridium/classificação , Clostridium/genética , Escherichia coli/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Cinética , Peso Molecular , Filogenia , Multimerização Proteica
13.
Mol Immunol ; 112: 123-130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100550

RESUMO

Cattle antibodies have unusually long CDR3 loops in their heavy chains (HCs), and limited light chain (LC) diversity, raising the question of whether these mask the effect of LC variation on antigen recognition. We have investigated the role of the LC in the structure and activity of two neutralizing cattle antibodies (B4 and B13) that bind the F protein of bovine respiratory syncytial virus (bRSV). Recombinant Fab fragments of B4 and B13 bound bRSV infected cells and showed similar affinities for purified bRSV F protein. Exchanging the LCs between the Fab fragments produced hybrid Fabs: B13* (B13 HC/B4 LC) and B4* (B4 HC/B13 LC). The affinity of B13* to the F protein was found to be two-fold lower than B13 whilst the binding affinity of B4* was reduced at least a hundred-fold compared to B4 such that it no longer bound to bRSV infected cells. Comparison of the structures of B4 and B13 with their LC exchanged counterparts B4* and B13* showed that paratope of the HC variable domain (VH) of B4 was disrupted on pairing with the B13 LC, consistent with the loss of binding activity. By contrast, B13 H3 adopts a similar conformation when paired with either B13 or B4 LCs. These observations confirm the expected key role of the extended H3 loop in antigen-binding by cattle antibodies but also show that the quaternary LC/HC subunit interaction can be crucial for its presentation and thus the LC variable domain (VL) is also important for antigen recognition.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Bovino/imunologia , Animais , Sítios de Ligação de Anticorpos/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas Recombinantes/imunologia , Infecções por Vírus Respiratório Sincicial/veterinária , Infecções por Vírus Respiratório Sincicial/virologia , Proteínas do Envelope Viral/imunologia
14.
Sci Rep ; 9(1): 4933, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894561

RESUMO

Group 21 and 5 allergens are homologous house dust mite proteins known as mid-tier allergens. To reveal the biological function of group 21 allergens and to understand better the allergenicity of the rDer f 21 allergen, we determined the 1.5 Å crystal structure of rDer f 21 allergen from Dermatophagoides farinae. The rDer f 21 protein consists of a three helical bundle, similar to available structures of group 21 and homologous group 5 allergens. The rDer f 21 dimer forms a hydrophobic binding pocket similar to the one in the Der p 5 allergen, which indicates that both of the homologous groups could share a similar function. By performing structure-guided mutagenesis, we mutated all 38 surface-exposed polar residues of the rDer f 21 allergen and carried out immuno-dot blot assays using 24 atopic sera. Six residues, K10, K26, K42, E43, K46, and K48, which are located in the region between the N-terminus and the loop 1 of rDer f 21 were identified as the major IgE epitopes of rDer f 21. Epitope mapping of all potential IgE epitopes on the surface of the rDer f 21 crystal structure revealed heterogeneity in the sIgE recognition of the allergen epitopes in atopic individuals. The higher the allergen-sIgE level of an individual, the higher the number of epitope residues that are found in the allergen. The results illustrate the clear correlation between the number of specific major epitope residues in an allergen and the sIgE level of the atopic population.


Assuntos
Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Dermatophagoides farinae/imunologia , Epitopos/ultraestrutura , Hipersensibilidade Imediata/imunologia , Imunoglobulina E/sangue , Animais , Antígenos de Dermatophagoides/metabolismo , Antígenos de Dermatophagoides/ultraestrutura , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/ultraestrutura , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Hipersensibilidade Imediata/sangue , Imunoglobulina E/imunologia
15.
J Med Chem ; 62(3): 1291-1305, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30640473

RESUMO

The Hippo pathway is an important regulator of cell growth, proliferation, and migration. TEAD transcription factors, which lie at the core of the Hippo pathway, are essential for regulation of organ growth and wound repair. Dysregulation of TEAD and its regulatory cofactor Yes-associated protein (YAP) have been implicated in numerous human cancers and hyperproliferative pathological processes. Hence, the YAP-TEAD complex is a promising therapeutic target. Here, we use in silico molecular docking using Bristol University Docking Engine to screen a library of more than 8 million druglike molecules for novel disrupters of the YAP-TEAD interaction. We report the identification of a novel compound (CPD3.1) with the ability to disrupt YAP-TEAD protein-protein interaction and inhibit TEAD activity, cell proliferation, and cell migration. The YAP-TEAD complex is a viable drug target, and CPD3.1 is a lead compound for the development of more potent TEAD inhibitors for treating cancer and other hyperproliferative pathologies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fatores de Transcrição/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Simulação por Computador , Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
16.
Biomacromolecules ; 19(11): 4320-4332, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230821

RESUMO

The gastric peptide hormone human PYY3-36 is a target for the development of therapeutics, especially for treatment of obesity. The conformation and aggregation behavior of PEGylated and lipidated derivatives of this peptide are examined using a combination of fluorescence dye assays, circular dichroism (CD) spectroscopy, analytical ultracentrifugation (AUC) measurements, small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM). The behavior of two PYY3-36 derivatives lipidated (with octyl chains) in different positions is compared to that of two derivatives with PEG attached at different residues and to that of the native peptide. We find that, unexpectedly, PYY3-36 forms amyloid fibril structures above a critical aggregation concentration. Formation of these structures is suppressed by PEGylation or lipidation. PEGylation significantly reduces the (reversible) loss of α-helix content observed on heating PYY3-36. The PEG conjugates form mainly monomeric structures in solution- coiled-coil formation, and other aggregation presumably being sterically hindered by swollen PEG chains. However, some small aggregates are detected by AUC. In complete contrast, both of the two lipidated peptides show the formation of spherical micelle-like structures which are small oligomeric aggregates. Our findings show that PEGylation and lipidation are complementary strategies to tune the conformation and aggregation of the important gastric peptide hormone human PYY3-36.


Assuntos
Lipídeos/química , Peptídeo YY/química , Peptídeo YY/metabolismo , Polietilenoglicóis/química , Multimerização Proteica , Estrutura Secundária de Proteína , Humanos
17.
J Biol Chem ; 293(24): 9335-9344, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29724824

RESUMO

Kidney- and brain-expressed protein (KIBRA), a multifunctional scaffold protein with around 20 known binding partners, is involved in memory and cognition, organ size control via the Hippo pathway, cell polarity, and membrane trafficking. KIBRA includes tandem N-terminal WW domains, a C2 domain, and motifs for binding atypical PKC and PDZ domains. A naturally occurring human KIBRA variant involving residue changes at positions 734 (Met-to-Ile) and 735 (Ser-to-Ala) within the C2 domain affects cognitive performance. We have elucidated 3D structures and calcium- and phosphoinositide-binding properties of human KIBRA C2 domain. Both WT and variant C2 adopt a canonical type I topology C2 domain fold. Neither Ca2+ nor any other metal ion was bound to WT or variant KIBRA C2 in crystal structures, and Ca2+ titration produced no significant reproducible changes in NMR spectra. NMR and X-ray diffraction data indicate that KIBRA C2 binds phosphoinositides via an atypical site involving ß-strands 5, 2, 1, and 8. Molecular dynamics simulations indicate that KIBRA C2 interacts with membranes via primary and secondary sites on the same domain face as the experimentally identified phosphoinositide-binding site. Our results indicate that KIBRA C2 domain association with membranes is calcium-independent and involves distinctive C2 domain-membrane relative orientations.


Assuntos
Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfatidilinositóis/metabolismo , Fosfoproteínas/metabolismo , Domínios C2 , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/genética , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica
18.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29643241

RESUMO

Cleavage and polyadenylation specificity factor 6 (CPSF6) is a human protein that binds HIV-1 capsid and mediates nuclear transport and integration targeting of HIV-1 preintegration complexes. Truncation of the protein at its C-terminal nuclear-targeting arginine/serine-rich (RS) domain produces a protein, CPSF6-358, that potently inhibits HIV-1 infection by targeting the capsid and inhibiting nuclear entry. To understand the molecular mechanism behind this restriction, the interaction between CPSF6-358 and HIV-1 capsid was characterized using in vitro and in vivo assays. Purified CPSF6-358 protein formed oligomers and bound in vitro-assembled wild-type (WT) capsid protein (CA) tubes, but not CA tubes containing a mutation in the putative binding site of CPSF6. Intriguingly, binding of CPSF6-358 oligomers to WT CA tubes physically disrupted the tubular assemblies into small fragments. Furthermore, fixed- and live-cell imaging showed that stably expressed CPSF6-358 forms cytoplasmic puncta upon WT HIV-1 infection and leads to capsid permeabilization. These events did not occur when the HIV-1 capsid contained a mutation known to prevent CPSF6 binding, nor did they occur in the presence of a small-molecule inhibitor of capsid binding to CPSF6-358. Together, our in vitro biochemical and transmission electron microscopy data and in vivo intracellular imaging results provide the first direct evidence for an oligomeric nature of CPSF6-358 and suggest a plausible mechanism for restriction of HIV-1 infection by CPSF6-358.IMPORTANCE After entry into cells, the HIV-1 capsid, which contains the viral genome, interacts with numerous host cell factors to facilitate crucial events required for replication, including uncoating. One such host cell factor, called CPSF6, is predominantly located in the cell nucleus and interacts with HIV-1 capsid. The interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Truncation of CPSF6 leads to its localization to the cell cytoplasm and inhibition of HIV-1 infection. Here, we determined that truncated CPSF6 protein forms large higher-order complexes that bind directly to HIV-1 capsid, leading to its disruption. Truncated CPSF6 expression in cells leads to premature capsid uncoating that is detrimental to HIV-1 infection. Our study provides the first direct evidence for an oligomeric nature of truncated CPSF6 and insights into the highly regulated process of HIV-1 capsid uncoating.


Assuntos
Capsídeo/fisiologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Complexos Multiproteicos/metabolismo , Replicação Viral , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Núcleo Celular , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , Humanos , Complexos Multiproteicos/genética , Mutação , Ligação Proteica , Domínios Proteicos , Fatores de Poliadenilação e Clivagem de mRNA/genética
19.
J Biol Chem ; 293(21): 8103-8112, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29636412

RESUMO

Many subsurface microorganisms couple their metabolism to the reduction or oxidation of extracellular substrates. For example, anaerobic mineral-respiring bacteria can use external metal oxides as terminal electron acceptors during respiration. Porin-cytochrome complexes facilitate the movement of electrons generated through intracellular catabolic processes across the bacterial outer membrane to these terminal electron acceptors. In the mineral-reducing model bacterium Shewanella oneidensis MR-1, this complex is composed of two decaheme cytochromes (MtrA and MtrC) and an outer-membrane ß-barrel (MtrB). However, the structures and mechanisms by which porin-cytochrome complexes transfer electrons are unknown. Here, we used small-angle neutron scattering (SANS) to study the molecular structure of the transmembrane complexes MtrAB and MtrCAB. Ab initio modeling of the scattering data yielded a molecular envelope with dimensions of ∼105 × 60 × 35 Å for MtrAB and ∼170 × 60 × 45 Å for MtrCAB. The shapes of these molecular envelopes suggested that MtrC interacts with the surface of MtrAB, extending ∼70 Å from the membrane surface and allowing the terminal hemes to interact with both MtrAB and an extracellular acceptor. The data also reveal that MtrA fully extends through the length of MtrB, with ∼30 Å being exposed into the periplasm. Proteoliposome models containing membrane-associated MtrCAB and internalized small tetraheme cytochrome (STC) indicate that MtrCAB could reduce Fe(III) citrate with STC as an electron donor, disclosing a direct interaction between MtrCAB and STC. Taken together, both structural and proteoliposome experiments support porin-cytochrome-mediated electron transfer via periplasmic cytochromes such as STC.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Grupo dos Citocromos c/química , Elétrons , Metais/química , Periplasma/metabolismo , Shewanella/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Respiração Celular , Cristalografia por Raios X , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons , Metais/metabolismo , Oxirredução
20.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 3): 143-149, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497017

RESUMO

Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase in human cells. The crystal structure of the HIV integrase-binding domain (IBD) of LEDGF has been determined in the absence of ligand. IBD was overexpressed in Escherichia coli, purified and crystallized by sitting-drop vapour diffusion. X-ray diffraction data were collected at Diamond Light Source to a resolution of 2.05 Å. The crystals belonged to space group P21, with eight polypeptide chains in the asymmetric unit arranged as an unusual octamer composed of four domain-swapped IBD dimers. IBD exists as a mixture of monomers and dimers in concentrated solutions, but the dimers are unlikely to be biologically relevant.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Integrase de HIV/química , Integrase de HIV/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Fatores de Transcrição/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...